nocaps: novel object captioning at scale

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh, Stefan Lee, Peter Anderson
{"title":"nocaps: novel object captioning at scale","authors":"Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh, Stefan Lee, Peter Anderson","doi":"10.1109/ICCV.2019.00904","DOIUrl":null,"url":null,"abstract":"Image captioning models have achieved impressive results on datasets containing limited visual concepts and large amounts of paired image-caption training data. However, if these models are to ever function in the wild, a much larger variety of visual concepts must be learned, ideally from less supervision. To encourage the development of image captioning models that can learn visual concepts from alternative data sources, such as object detection datasets, we present the first large-scale benchmark for this task. Dubbed ‘nocaps’, for novel object captioning at scale, our benchmark consists of 166,100 human-generated captions describing 15,100 images from the Open Images validation and test sets. The associated training data consists of COCO image-caption pairs, plus Open Images image-level labels and object bounding boxes. Since Open Images contains many more classes than COCO, nearly 400 object classes seen in test images have no or very few associated training captions (hence, nocaps). We extend existing novel object captioning models to establish strong baselines for this benchmark and provide analysis to guide future work.","PeriodicalId":72022,"journal":{"name":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","volume":"63 1","pages":"8947-8956"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"249","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 249

Abstract

Image captioning models have achieved impressive results on datasets containing limited visual concepts and large amounts of paired image-caption training data. However, if these models are to ever function in the wild, a much larger variety of visual concepts must be learned, ideally from less supervision. To encourage the development of image captioning models that can learn visual concepts from alternative data sources, such as object detection datasets, we present the first large-scale benchmark for this task. Dubbed ‘nocaps’, for novel object captioning at scale, our benchmark consists of 166,100 human-generated captions describing 15,100 images from the Open Images validation and test sets. The associated training data consists of COCO image-caption pairs, plus Open Images image-level labels and object bounding boxes. Since Open Images contains many more classes than COCO, nearly 400 object classes seen in test images have no or very few associated training captions (hence, nocaps). We extend existing novel object captioning models to establish strong baselines for this benchmark and provide analysis to guide future work.
Nocaps:大规模的新对象字幕
图像字幕模型在包含有限视觉概念和大量成对图像字幕训练数据的数据集上取得了令人印象深刻的结果。然而,如果这些模型要在野外发挥作用,就必须学习更多种类的视觉概念,最好是在较少监督的情况下。为了鼓励开发可以从其他数据源(如目标检测数据集)学习视觉概念的图像字幕模型,我们提出了该任务的第一个大规模基准。我们的基准测试被称为“nocaps”,用于大规模的新对象字幕,由166,100个人工生成的字幕组成,描述了来自Open images验证和测试集的15,100张图像。相关的训练数据包括COCO图像标题对,加上Open Images图像级标签和对象边界框。由于Open Images包含比COCO更多的类,在测试图像中看到的近400个对象类没有或很少有相关的训练说明(因此,nocaps)。我们扩展了现有的新对象字幕模型,为这个基准建立了强大的基线,并提供了分析来指导未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信