Pulsed Neutron Imaging for Non-destructive Testing using Simulated Nuclear Fuel Samples

Daisuke Ito , Tadafumi Sano , Jun-ichi Hori , Yoshiyuki Takahashi , Hiroyuki Hasemi , Takashi Kamiyama , Ken Nakajima
{"title":"Pulsed Neutron Imaging for Non-destructive Testing using Simulated Nuclear Fuel Samples","authors":"Daisuke Ito ,&nbsp;Tadafumi Sano ,&nbsp;Jun-ichi Hori ,&nbsp;Yoshiyuki Takahashi ,&nbsp;Hiroyuki Hasemi ,&nbsp;Takashi Kamiyama ,&nbsp;Ken Nakajima","doi":"10.1016/j.phpro.2017.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>An integrated assessment method for a nuclear fuel with high decay heat and high radioactivity is required to establish fast reactor system with Trans-Uranium (TRU) fuel containing minor actinides. In addition, a Pu quantitation method with rapidity and accuracy is also necessary in a viewpoint of nuclear security. For these demands, a quantitative evaluation technique for nuclei concentration, thermal property and physical information of such fuel has to be developed. The present study focuses on the non-destructive imaging using pulsed neutrons. Experiments are carried out at Hokkaido University Neutron Source (HUNS) and a gas electron multiplier (GEM) is applied to obtain 2-D information of time-of-flight (TOF). To simulate a nuclear fuel pellet, a sample with equivalent thermal neutron cross-section to the enriched uranium fuel is prepared and the transmitted images of the simulated sample are acquired. Furthermore, a small piece of In, which simulates the Pu spot in the actual fuel, is inserted into the sample and the detectability of the small spot is discussed.</p></div>","PeriodicalId":20407,"journal":{"name":"Physics Procedia","volume":"88 ","pages":"Pages 89-94"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phpro.2017.06.011","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875389217300615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An integrated assessment method for a nuclear fuel with high decay heat and high radioactivity is required to establish fast reactor system with Trans-Uranium (TRU) fuel containing minor actinides. In addition, a Pu quantitation method with rapidity and accuracy is also necessary in a viewpoint of nuclear security. For these demands, a quantitative evaluation technique for nuclei concentration, thermal property and physical information of such fuel has to be developed. The present study focuses on the non-destructive imaging using pulsed neutrons. Experiments are carried out at Hokkaido University Neutron Source (HUNS) and a gas electron multiplier (GEM) is applied to obtain 2-D information of time-of-flight (TOF). To simulate a nuclear fuel pellet, a sample with equivalent thermal neutron cross-section to the enriched uranium fuel is prepared and the transmitted images of the simulated sample are acquired. Furthermore, a small piece of In, which simulates the Pu spot in the actual fuel, is inserted into the sample and the detectability of the small spot is discussed.

用模拟核燃料样品进行无损检测的脉冲中子成像
用含少量锕系元素的反式铀(TRU)燃料建立快堆系统,需要一种高衰变热、高放射性核燃料的综合评价方法。此外,从核安全的角度出发,需要一种快速、准确的钚定量方法。为了满足这些需求,必须开发一种核浓度、热性质和物理信息的定量评价技术。本文主要研究脉冲中子的无损成像技术。在北海道大学中子源(HUNS)上进行了实验,并应用气电子倍增器(GEM)获得了飞行时间(TOF)的二维信息。为了模拟核燃料球团,制备了热中子截面与浓缩铀燃料相当的样品,并获得了模拟样品的透射图像。此外,在样品中插入一小块模拟实际燃料中Pu点的铟,并讨论了该小点的可探测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信