ANN-based PCA to predict evapotranspiration: a case study in India

IF 2.1 4区 环境科学与生态学 Q2 ENGINEERING, CIVIL
M. Abraham, S. Mohan
{"title":"ANN-based PCA to predict evapotranspiration: a case study in India","authors":"M. Abraham, S. Mohan","doi":"10.2166/aqua.2023.201","DOIUrl":null,"url":null,"abstract":"\n \n The Penman–Monteith evapotranspiration (ET) model has superior predictive ability than the other methods, but it is challenging to apply for several Indian stations, owing to the need for a large number of climatic variables. The study investigated an artificial neural network (ANN) model for calculating ET for various agro-climatic regions of India. Sensitivity analysis showed that the overall average change in ET0 values for 25% change in the climatic variables were 18, 16, 14, 7, 5, and 4%, respectively, for Tmax, RHmean, Rn, wind speed, Tmin, and sunshine hours. The dominant climatic variables were identified from the principal component analysis (PCA) and ET0 was computed using an ANN with dominant climatic variables. The ANN architecture with backpropagation technique had one hidden layer and neurons ranging from 10 to 30 for all climatic variables and from 5 to 10 for PCA variables. The new ET models were statistically compared with Penman–Monteith ET estimate, and found reliable. PCA variables guaranteed an estimate of ET0 accounting for 98% of the variability. The average values of coefficient of determination, standard error of estimate, and percentage efficiency were observed as 0.96, 0.24, and 94%, respectively.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/aqua.2023.201","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The Penman–Monteith evapotranspiration (ET) model has superior predictive ability than the other methods, but it is challenging to apply for several Indian stations, owing to the need for a large number of climatic variables. The study investigated an artificial neural network (ANN) model for calculating ET for various agro-climatic regions of India. Sensitivity analysis showed that the overall average change in ET0 values for 25% change in the climatic variables were 18, 16, 14, 7, 5, and 4%, respectively, for Tmax, RHmean, Rn, wind speed, Tmin, and sunshine hours. The dominant climatic variables were identified from the principal component analysis (PCA) and ET0 was computed using an ANN with dominant climatic variables. The ANN architecture with backpropagation technique had one hidden layer and neurons ranging from 10 to 30 for all climatic variables and from 5 to 10 for PCA variables. The new ET models were statistically compared with Penman–Monteith ET estimate, and found reliable. PCA variables guaranteed an estimate of ET0 accounting for 98% of the variability. The average values of coefficient of determination, standard error of estimate, and percentage efficiency were observed as 0.96, 0.24, and 94%, respectively.
基于人工神经网络的PCA预测蒸散发:以印度为例
Penman-Monteith蒸散发(ET)模式的预测能力优于其他方法,但由于需要大量的气候变量,该模式难以适用于多个印度站。该研究研究了一种人工神经网络(ANN)模型,用于计算印度不同农业气候区的ET。敏感性分析表明,Tmax、RHmean、Rn、风速、Tmin和日照时数对气候变量ET0的总体平均变化幅度分别为18%、16%、14%、7%、5%和4%。利用主成分分析(PCA)确定了主要气候变量,并利用带有主要气候变量的人工神经网络计算了ET0。采用反向传播技术的人工神经网络结构有一个隐藏层,所有气候变量的神经元数在10 ~ 30之间,主成分变量的神经元数在5 ~ 10之间。新的蒸散发模型与Penman-Monteith估算的蒸散发进行了统计比较,发现其可靠。PCA变量保证了ET0的估计占变异的98%。测定系数、估计标准误差和效率百分比的平均值分别为0.96、0.24和94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信