ParallelGDB: a parallel graph database based on cache specialization

Luis Barguñó, V. Muntés-Mulero, David Dominguez-Sal, P. Valduriez
{"title":"ParallelGDB: a parallel graph database based on cache specialization","authors":"Luis Barguñó, V. Muntés-Mulero, David Dominguez-Sal, P. Valduriez","doi":"10.1145/2076623.2076643","DOIUrl":null,"url":null,"abstract":"The need for managing massive attributed graphs is becoming common in many areas such as recommendation systems, proteomics analysis, social network analysis or bibliographic analysis. This is making it necessary to move towards parallel systems that allow managing graph databases containing millions of vertices and edges. Previous work on distributed graph databases has focused on finding ways to partition the graph to reduce network traffic and improve execution time. However, partitioning a graph and keeping the information regarding the location of vertices might be unrealistic for massive graphs. In this paper, we propose Parallel-GDB, a new system based on specializing the local caches of any node in this system, providing a better cache hit ratio. ParallelGDB uses a random graph partitioning, avoiding complex partition methods based on the graph topology, that usually require managing extra data structures. This proposed system provides an efficient environment for distributed graph databases.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"17 1","pages":"162-169"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076623.2076643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The need for managing massive attributed graphs is becoming common in many areas such as recommendation systems, proteomics analysis, social network analysis or bibliographic analysis. This is making it necessary to move towards parallel systems that allow managing graph databases containing millions of vertices and edges. Previous work on distributed graph databases has focused on finding ways to partition the graph to reduce network traffic and improve execution time. However, partitioning a graph and keeping the information regarding the location of vertices might be unrealistic for massive graphs. In this paper, we propose Parallel-GDB, a new system based on specializing the local caches of any node in this system, providing a better cache hit ratio. ParallelGDB uses a random graph partitioning, avoiding complex partition methods based on the graph topology, that usually require managing extra data structures. This proposed system provides an efficient environment for distributed graph databases.
ParallelGDB:一个基于缓存专门化的并行图形数据库
在推荐系统、蛋白质组学分析、社会网络分析或书目分析等许多领域,管理大量属性图的需求正变得越来越普遍。这使得有必要转向并行系统,以允许管理包含数百万个顶点和边的图形数据库。以前关于分布式图数据库的工作主要集中在寻找划分图的方法,以减少网络流量和提高执行时间。然而,对一个图进行分区并保留关于顶点位置的信息对于大规模图来说可能是不现实的。在本文中,我们提出了Parallel-GDB,一种基于专门化任何节点的本地缓存的新系统,提供了更好的缓存命中率。ParallelGDB使用随机图分区,避免了基于图拓扑的复杂分区方法,这通常需要管理额外的数据结构。该系统为分布式图数据库提供了一个高效的运行环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信