Lithium carbonate sedimentation using flocculants with different ionic bases

Yam Morales, N. Herrera, K. Pérez
{"title":"Lithium carbonate sedimentation using flocculants with different ionic bases","authors":"Yam Morales, N. Herrera, K. Pérez","doi":"10.2298/hemind201128020m","DOIUrl":null,"url":null,"abstract":"Lithium has become a metal of enormous interest worldwide. The extensive use of rechargeable batteries for a range of applications has pushed for rapid growth in demand for lithium carbonate. This compound is produced by crystallization, by reaction with lithium chloride (in solution) and by adding sodium carbonate. Low sedimentation rates in the evaporation pools present a problem in the crystallization process. For this reason, in this work, mineral sedimentation tests were carried out with the use of two flocculant types with different ionic charges. The tests were carried out at a laboratory level using different dosages for each flocculant and measurements were performed to obtain the increase in the content of solids in the sediment. The anionic flocculant had better performance as compared to that of the cationic flocculant, increasing the sedimentation rate of lithium carbonate by up to 6.5. However, similar solids contents were obtained with the use of the cationic flocculant at 3.5 times lower dosage making it the flocculant of choice regarding the economic point of view.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2298/hemind201128020m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium has become a metal of enormous interest worldwide. The extensive use of rechargeable batteries for a range of applications has pushed for rapid growth in demand for lithium carbonate. This compound is produced by crystallization, by reaction with lithium chloride (in solution) and by adding sodium carbonate. Low sedimentation rates in the evaporation pools present a problem in the crystallization process. For this reason, in this work, mineral sedimentation tests were carried out with the use of two flocculant types with different ionic charges. The tests were carried out at a laboratory level using different dosages for each flocculant and measurements were performed to obtain the increase in the content of solids in the sediment. The anionic flocculant had better performance as compared to that of the cationic flocculant, increasing the sedimentation rate of lithium carbonate by up to 6.5. However, similar solids contents were obtained with the use of the cationic flocculant at 3.5 times lower dosage making it the flocculant of choice regarding the economic point of view.
用不同离子碱絮凝剂沉淀碳酸锂
锂已经成为一种全世界都非常感兴趣的金属。可充电电池的广泛应用推动了碳酸锂需求的快速增长。这种化合物是通过结晶、与氯化锂(溶液)反应和加入碳酸钠生成的。蒸发池的低沉降率是结晶过程中的一个问题。为此,在本工作中,使用两种不同离子电荷的絮凝剂进行了矿物沉降试验。试验是在实验室一级进行的,每种絮凝剂使用不同剂量,并进行了测量,以获得沉积物中固体含量的增加。与阳离子絮凝剂相比,阴离子絮凝剂的絮凝性能更好,可使碳酸锂的沉降速率提高6.5。然而,使用阳离子絮凝剂,当用量降低3.5倍时,固相含量相近,从经济角度考虑,它是首选的絮凝剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信