Q. Leng, Xi Wu, Shiming Xu, Sixue Wang, D. Jin, Ping Wang, Fujiang Dong, Debing Wu
{"title":"Numerical simulation of dyeing wastewater treated by a multi-stage reverse electrodialysis reactor series system","authors":"Q. Leng, Xi Wu, Shiming Xu, Sixue Wang, D. Jin, Ping Wang, Fujiang Dong, Debing Wu","doi":"10.1177/0958305X221112909","DOIUrl":null,"url":null,"abstract":"By developing the mathematical model of a serial multi-stage reverse electrodialysis reactor (REDR) system for wastewater treatment, this paper numerically simulates the degradation process of azo dye (methyl orange) dyeing wastewater. The operation performances of the serial system with an anode and cathode synergetic degradative circulation mode are explored by numerical simulation. The influences of operation parameter variations on key performance indicators are investigated and discussed. Results indicate that the serial system can achieve excellent electricity conversion efficiency and degradative performance under an appropriate output current condition. A high initial MO concentration and electrode rinse solution (ERS) flowrate are helpful to improve the treatment performance of the system. A low concentrated solution (CS) concentration is beneficial for raising the electricity conversion efficiency and reducing the total energy consumption (TEC).","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"40 1","pages":"2497 - 2520"},"PeriodicalIF":4.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221112909","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 3
Abstract
By developing the mathematical model of a serial multi-stage reverse electrodialysis reactor (REDR) system for wastewater treatment, this paper numerically simulates the degradation process of azo dye (methyl orange) dyeing wastewater. The operation performances of the serial system with an anode and cathode synergetic degradative circulation mode are explored by numerical simulation. The influences of operation parameter variations on key performance indicators are investigated and discussed. Results indicate that the serial system can achieve excellent electricity conversion efficiency and degradative performance under an appropriate output current condition. A high initial MO concentration and electrode rinse solution (ERS) flowrate are helpful to improve the treatment performance of the system. A low concentrated solution (CS) concentration is beneficial for raising the electricity conversion efficiency and reducing the total energy consumption (TEC).
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.