{"title":"Genetic Variability, Heritability and Genetic Advance Among Bread Wheat Genotypes at Southeastern Ethiopia","authors":"Tilahun Bayisa, H. Tefera, T. Letta","doi":"10.11648/j.aff.20200904.15","DOIUrl":null,"url":null,"abstract":"The knowledge of nature and magnitude of variation existing in available breeding materials is great importance for successful selection of varieties. This study was conducted to generate information on the extent of genetic variability in advanced bread wheat lines. Thirty bread wheat genotypes were tested at Sinana and Agarfa, Southeastern Ethiopia, in alpha lattice design with three replications. Combined over locations ANOVA was carried out for yield and yield related traits. There were highly significant differences among genotypes for all traits. Highly significant location effects at P < 0.01 were observed for yield and yield related except for harvest index which showed significant effect at P < 0.05 and grain yield non-significant location effect. This indicates the presence of variability for these characters among the tested genotypes. In combined analysis, grain yield had high PCV (27.1%) and moderate GCV was observed for biomass weight, grain yield and harvest index. Phenotypic coefficient of variance (PCV) moderate for biomass weight and harvest index. Heritability estimates in broad sense (H2) was very high for most of the characters except for grain yield (52.3%) and number of kernel per spike (73.2%). However, low GAM was observed for most of the characters except moderate GAM was observed for harvest index (15.9%). Finally, the presence of variability among the genotypes, performance of heritability and GAM in the tested traits of the genotypes confirmed possibility to increase wheat productivity. Hence, selection and hybridization on those genotypes can be recommended for farther yield improvement of bread wheat.","PeriodicalId":7466,"journal":{"name":"Agriculture, Forestry and Fisheries","volume":"17 1","pages":"128"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Forestry and Fisheries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.aff.20200904.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The knowledge of nature and magnitude of variation existing in available breeding materials is great importance for successful selection of varieties. This study was conducted to generate information on the extent of genetic variability in advanced bread wheat lines. Thirty bread wheat genotypes were tested at Sinana and Agarfa, Southeastern Ethiopia, in alpha lattice design with three replications. Combined over locations ANOVA was carried out for yield and yield related traits. There were highly significant differences among genotypes for all traits. Highly significant location effects at P < 0.01 were observed for yield and yield related except for harvest index which showed significant effect at P < 0.05 and grain yield non-significant location effect. This indicates the presence of variability for these characters among the tested genotypes. In combined analysis, grain yield had high PCV (27.1%) and moderate GCV was observed for biomass weight, grain yield and harvest index. Phenotypic coefficient of variance (PCV) moderate for biomass weight and harvest index. Heritability estimates in broad sense (H2) was very high for most of the characters except for grain yield (52.3%) and number of kernel per spike (73.2%). However, low GAM was observed for most of the characters except moderate GAM was observed for harvest index (15.9%). Finally, the presence of variability among the genotypes, performance of heritability and GAM in the tested traits of the genotypes confirmed possibility to increase wheat productivity. Hence, selection and hybridization on those genotypes can be recommended for farther yield improvement of bread wheat.