A combined forecasting method integrating contextual knowledge

Huang An-qiang, Wang. Shouyang
{"title":"A combined forecasting method integrating contextual knowledge","authors":"Huang An-qiang, Wang. Shouyang","doi":"10.4018/978-1-4666-3998-0.ch019","DOIUrl":null,"url":null,"abstract":"According to Qian's meta-synthesis theory and TEI@I methodology,this paper proposes a combined forecasting method based on integrated contextual knowledge(CFMIK).Utilizing contextual knowledge to guide the forecasting process,this method can cover the influence of those factors that cannot be explicitly included in the forecasting model,and thus it can decrease the forecast error from stochastic events to some extent.Through a container throughput forecast case,this paper compares the performance of CFMIK,AFTER(a combined forecasting method) and 3 single models(ARIMA,BP-ANN, Exponential Smoothing).The results show that the performance of CFMIK is better than that of the remaining ones.","PeriodicalId":101206,"journal":{"name":"Systems Engineering - Theory & Practice","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering - Theory & Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-4666-3998-0.ch019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

According to Qian's meta-synthesis theory and TEI@I methodology,this paper proposes a combined forecasting method based on integrated contextual knowledge(CFMIK).Utilizing contextual knowledge to guide the forecasting process,this method can cover the influence of those factors that cannot be explicitly included in the forecasting model,and thus it can decrease the forecast error from stochastic events to some extent.Through a container throughput forecast case,this paper compares the performance of CFMIK,AFTER(a combined forecasting method) and 3 single models(ARIMA,BP-ANN, Exponential Smoothing).The results show that the performance of CFMIK is better than that of the remaining ones.
一种整合上下文知识的组合预测方法
根据Qian的元综合理论和TEI@I方法,本文提出了一种基于整合语境知识(CFMIK)的组合预测方法。该方法利用上下文知识指导预测过程,可以覆盖预测模型中不能明确包含的因素的影响,从而在一定程度上减小随机事件的预测误差。通过一个集装箱吞吐量预测案例,比较了CFMIK、AFTER(一种组合预测方法)和3种单一模型(ARIMA、BP-ANN、指数平滑)的性能。结果表明,CFMIK的性能优于其他几种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信