Gautam Kumar, Sambit Bakshi, A. K. Sangaiah, Pankaj Kumar Sa
{"title":"Experimental Evaluation of Covariates Effects on Periocular Biometrics: A Robust Security Assessment Framework","authors":"Gautam Kumar, Sambit Bakshi, A. K. Sangaiah, Pankaj Kumar Sa","doi":"10.1145/3579029","DOIUrl":null,"url":null,"abstract":"The growing integration of technology into our lives has resulted in unprecedented amounts of data that are being exchanged among devices in an Internet of Things (IoT) environment. Authentication, identification, and device heterogeneities are major security and privacy concerns in IoT. One of the most effective solutions to avoid unauthorized access to sensitive information is biometrics. Deep learning-based biometric systems have been proven to outperform traditional image processing and machine learning techniques. However, the image quality covariates associated with blur, resolution, illumination, and noise predominantly affect recognition performance. Therefore, assessing the robustness of the developed solution is another important concern that still needs to be investigated. This article proposes a periocular region-based biometric system and explores the effect of image quality covariates (artifacts) on the performance of periocular recognition. To simulate the real-time scenarios and understand the consequences of blur, resolution, and bit-depth of images on the recognition accuracy of periocular biometrics, we modeled out-of-focus blur, camera shake blur, low-resolution, and low bit-depth image acquisition using Gaussian function, linear motion, interpolation, and bit plan slicing, respectively. All the images of the UBIRIS.v1 database are degraded by varying strength of image quality covariates to obtain degraded versions of the database. Afterward, deep models are trained with each degraded version of the database. The performance of the model is evaluated by measuring statistical parameters calculated from a confusion matrix. Experimental results show that among all types of covariates, camera shake blur has less effect on the recognition performance, while out-of-focus blur significantly impacts it. Irrespective of image quality, the convolutional neural network produces excellent results, which proves the robustness of the developed model.","PeriodicalId":44355,"journal":{"name":"ACM Journal of Data and Information Quality","volume":"74 1","pages":"1 - 25"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal of Data and Information Quality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The growing integration of technology into our lives has resulted in unprecedented amounts of data that are being exchanged among devices in an Internet of Things (IoT) environment. Authentication, identification, and device heterogeneities are major security and privacy concerns in IoT. One of the most effective solutions to avoid unauthorized access to sensitive information is biometrics. Deep learning-based biometric systems have been proven to outperform traditional image processing and machine learning techniques. However, the image quality covariates associated with blur, resolution, illumination, and noise predominantly affect recognition performance. Therefore, assessing the robustness of the developed solution is another important concern that still needs to be investigated. This article proposes a periocular region-based biometric system and explores the effect of image quality covariates (artifacts) on the performance of periocular recognition. To simulate the real-time scenarios and understand the consequences of blur, resolution, and bit-depth of images on the recognition accuracy of periocular biometrics, we modeled out-of-focus blur, camera shake blur, low-resolution, and low bit-depth image acquisition using Gaussian function, linear motion, interpolation, and bit plan slicing, respectively. All the images of the UBIRIS.v1 database are degraded by varying strength of image quality covariates to obtain degraded versions of the database. Afterward, deep models are trained with each degraded version of the database. The performance of the model is evaluated by measuring statistical parameters calculated from a confusion matrix. Experimental results show that among all types of covariates, camera shake blur has less effect on the recognition performance, while out-of-focus blur significantly impacts it. Irrespective of image quality, the convolutional neural network produces excellent results, which proves the robustness of the developed model.