{"title":"On probabilistic fixpoint and Markov chain query languages","authors":"Daniel Deutch, Christoph E. Koch, T. Milo","doi":"10.1145/1807085.1807114","DOIUrl":null,"url":null,"abstract":"We study highly expressive query languages such as datalog, fixpoint, and while-languages on probabilistic databases. We generalize these languages such that computation steps (e.g. datalog rules) can fire probabilistically. We define two possible semantics for such query languages, namely inflationary semantics where the results of each computation step are added to the current database and noninflationary queries that induce a random walk in-between database instances. We then study the complexity of exact and approximate query evaluation under these semantics.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"25 1","pages":"215-226"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807085.1807114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
We study highly expressive query languages such as datalog, fixpoint, and while-languages on probabilistic databases. We generalize these languages such that computation steps (e.g. datalog rules) can fire probabilistically. We define two possible semantics for such query languages, namely inflationary semantics where the results of each computation step are added to the current database and noninflationary queries that induce a random walk in-between database instances. We then study the complexity of exact and approximate query evaluation under these semantics.