Design 3D Printed Coils for WPT

Jun Xu, E. L. Doubrovski, J. Geraedts, Yu Song
{"title":"Design 3D Printed Coils for WPT","authors":"Jun Xu, E. L. Doubrovski, J. Geraedts, Yu Song","doi":"10.1115/detc2021-71412","DOIUrl":null,"url":null,"abstract":"\n The geometric shapes of coils influence the performance of a 3D IPT system. In this paper, we proposed a 3D coil design method based on (3D) printing electronics. Given a 3D transmitter coil, the center position of the receiver coil is estimated as a random seed position in the corresponding 3D surface first. At this position, we use the heatmap method with electromagnetic constraints to iteratively extend the coil until the desired power can be transferred via the coil. For each extension of the coil, i.e. a new turn, the shape of the coil is optimized by calculating the convex hull of the new turn in the 2D projection plane. Using this method, we are able to generate a receiver coil to transmit “just enough” power at a given seed position. Then, by fixing the receiver coil, the 3D shape of the transmitter coil can be optimized as well. This zig-zag optimization process iterates until there are few changes of the position and 3D shapes in the iteration. Experiment results with Ansys Maxwell verified the effectiveness of the proposed 3D coil design method, and highlighted possible future research directions as well.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-71412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The geometric shapes of coils influence the performance of a 3D IPT system. In this paper, we proposed a 3D coil design method based on (3D) printing electronics. Given a 3D transmitter coil, the center position of the receiver coil is estimated as a random seed position in the corresponding 3D surface first. At this position, we use the heatmap method with electromagnetic constraints to iteratively extend the coil until the desired power can be transferred via the coil. For each extension of the coil, i.e. a new turn, the shape of the coil is optimized by calculating the convex hull of the new turn in the 2D projection plane. Using this method, we are able to generate a receiver coil to transmit “just enough” power at a given seed position. Then, by fixing the receiver coil, the 3D shape of the transmitter coil can be optimized as well. This zig-zag optimization process iterates until there are few changes of the position and 3D shapes in the iteration. Experiment results with Ansys Maxwell verified the effectiveness of the proposed 3D coil design method, and highlighted possible future research directions as well.
为WPT设计3D打印线圈
线圈的几何形状影响着三维IPT系统的性能。本文提出了一种基于3D打印电子学的三维线圈设计方法。给定一个三维发射线圈,首先将接收线圈的中心位置估计为相应三维表面上的随机种子位置。在此位置,我们使用带有电磁约束的热图方法迭代地扩展线圈,直到可以通过线圈传输所需的功率。对于线圈的每次延伸,即一个新的转弯,通过计算新转弯在二维投影平面上的凸包来优化线圈的形状。使用这种方法,我们能够产生一个接收线圈,在给定的种子位置传输“刚好足够”的功率。然后,通过固定接收线圈,可以优化发射线圈的三维形状。这种锯齿形优化过程迭代,直到迭代中位置和3D形状的变化很少。Ansys Maxwell的实验结果验证了所提出的三维线圈设计方法的有效性,并指出了未来可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信