Assessing Goodness of Approximate Distributions for Inferences about Parameters in Nonlinear Regression Model

Md Jamil Hasan Karami
{"title":"Assessing Goodness of Approximate Distributions for Inferences about Parameters in Nonlinear Regression Model","authors":"Md Jamil Hasan Karami","doi":"10.3329/dujs.v71i1.65267","DOIUrl":null,"url":null,"abstract":"It is often crucial to make inferences about parameters of a nonlinear regression model due to a dependency of Fisher information on the parameter being estimated. Here, the distribution of the relevant test statistic is not exact, but approximate. Therefore, similar conclusion, based on the values of different test statistics, may not be reached. This study shows, in this circumstance, how to come up with a nonlinear regression model that can be used for forecasting and other related purposes. The goodness of the approximate distributions, F and χ 2 , has been assessed to reach a correct decision. The simulation results show that the simulated probability of committing a type I error is very close to its true value in case of F distribution corresponding to F statistic. However, the χ 2 distribution does not do a similar job for the LRT statistic since the simulated type I error is quite larger.\nDhaka Univ. J. Sci. 71(1): 13-16, 2023 (Jan)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v71i1.65267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is often crucial to make inferences about parameters of a nonlinear regression model due to a dependency of Fisher information on the parameter being estimated. Here, the distribution of the relevant test statistic is not exact, but approximate. Therefore, similar conclusion, based on the values of different test statistics, may not be reached. This study shows, in this circumstance, how to come up with a nonlinear regression model that can be used for forecasting and other related purposes. The goodness of the approximate distributions, F and χ 2 , has been assessed to reach a correct decision. The simulation results show that the simulated probability of committing a type I error is very close to its true value in case of F distribution corresponding to F statistic. However, the χ 2 distribution does not do a similar job for the LRT statistic since the simulated type I error is quite larger. Dhaka Univ. J. Sci. 71(1): 13-16, 2023 (Jan)
非线性回归模型参数推断近似分布的优度评定
由于费雪信息依赖于被估计的参数,对非线性回归模型的参数进行推断往往是至关重要的。在这里,相关检验统计量的分布不是精确的,而是近似的。因此,基于不同检验统计量的值,可能无法得出相似的结论。本研究表明,在这种情况下,如何提出一个可以用于预测和其他相关目的的非线性回归模型。对近似分布F和χ 2的优度进行了评估,以得出正确的决策。仿真结果表明,在F分布对应于F统计量的情况下,模拟的I类错误发生概率非常接近其真实值。然而,χ 2分布不能为LRT统计数据做类似的工作,因为模拟的I型误差相当大。达卡大学学报(自然科学版),71(1):13-16,2023 (1)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信