VARIANCE OF THE ISOTROPIC UNIFORM SYSTEMATIC SAMPLING

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
J. Janáček, D. Jirák
{"title":"VARIANCE OF THE ISOTROPIC UNIFORM SYSTEMATIC SAMPLING","authors":"J. Janáček, D. Jirák","doi":"10.5566/ias.2218","DOIUrl":null,"url":null,"abstract":"The integral of a smooth function with bounded support over a set with finite perimeter in Euclidean space ℝ d is estimated using a periodic grid in an isotropic uniform random position. Extension term in the estimator variance is proportional to the integral of the squared modulus of the function over the object boundary and to the grid scaling factor raised to the power of d +1. Our result generalizes the Kendall-Hlawka-Matheron formula for the variance of the isotropic uniform systematic estimator of volume.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"1 1","pages":"261-267"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/ias.2218","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The integral of a smooth function with bounded support over a set with finite perimeter in Euclidean space ℝ d is estimated using a periodic grid in an isotropic uniform random position. Extension term in the estimator variance is proportional to the integral of the squared modulus of the function over the object boundary and to the grid scaling factor raised to the power of d +1. Our result generalizes the Kendall-Hlawka-Matheron formula for the variance of the isotropic uniform systematic estimator of volume.
各向同性均匀系统抽样的方差
利用周期网格在各向同性均匀随机位置上估计了欧几里德空间中有限周长集合上具有有界支持的光滑函数的积分。估计量方差中的扩展项与函数在目标边界上的平方模量的积分和网格缩放因子的d +1次方成正比。我们的结果推广了体积各向同性均匀系统估计量方差的Kendall-Hlawka-Matheron公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信