{"title":"The Bottleneck Degree of Algebraic Varieties","authors":"S. Rocco, David Eklund, Madeleine Weinstein","doi":"10.1137/19m1265776","DOIUrl":null,"url":null,"abstract":"A bottleneck of a smooth algebraic variety $X \\subset \\mathbb{C}^n$ is a pair of distinct points $(x,y) \\in X$ such that the Euclidean normal spaces at $x$ and $y$ contain the line spanned by $x$ and $y$. The narrowness of bottlenecks is a fundamental complexity measure in the algebraic geometry of data. In this paper we study the number of bottlenecks of affine and projective varieties, which we call the bottleneck degree. The bottleneck degree is a measure of the complexity of computing all bottlenecks of an algebraic variety, using for example numerical homotopy methods. We show that the bottleneck degree is a function of classical invariants such as Chern classes and polar classes. We give the formula explicitly in low dimension and provide an algorithm to compute it in the general case.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19m1265776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 20
Abstract
A bottleneck of a smooth algebraic variety $X \subset \mathbb{C}^n$ is a pair of distinct points $(x,y) \in X$ such that the Euclidean normal spaces at $x$ and $y$ contain the line spanned by $x$ and $y$. The narrowness of bottlenecks is a fundamental complexity measure in the algebraic geometry of data. In this paper we study the number of bottlenecks of affine and projective varieties, which we call the bottleneck degree. The bottleneck degree is a measure of the complexity of computing all bottlenecks of an algebraic variety, using for example numerical homotopy methods. We show that the bottleneck degree is a function of classical invariants such as Chern classes and polar classes. We give the formula explicitly in low dimension and provide an algorithm to compute it in the general case.