Remarks on Kato's inequality when ∆pu is a measure

Xiaojing Liu, T. Horiuchi
{"title":"Remarks on Kato's inequality when ∆pu is a measure","authors":"Xiaojing Liu, T. Horiuchi","doi":"10.5036/MJIU.48.45","DOIUrl":null,"url":null,"abstract":"Let Ω be a bounded domain of R (N ≥ 1) . In this article, we shall study Kato’s inequality when ∆pu is a measure, where ∆pu denotes a p-Laplace operator with 1 < p < ∞. The classical Kato’s inequality for a Laplacian asserts that given any function u ∈ Lloc(Ω) such that ∆u ∈ Lloc(Ω), then ∆(u) is a Radon measure and the following holds: ∆(u) ≥ χ[u≥0]∆u in D′(Ω). Our main result extends Kato’s inequality to the case where ∆pu is a Radon measures on Ω. We also establish the inverse maximum principle for ∆p.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"60 1","pages":"45-61"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.48.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let Ω be a bounded domain of R (N ≥ 1) . In this article, we shall study Kato’s inequality when ∆pu is a measure, where ∆pu denotes a p-Laplace operator with 1 < p < ∞. The classical Kato’s inequality for a Laplacian asserts that given any function u ∈ Lloc(Ω) such that ∆u ∈ Lloc(Ω), then ∆(u) is a Radon measure and the following holds: ∆(u) ≥ χ[u≥0]∆u in D′(Ω). Our main result extends Kato’s inequality to the case where ∆pu is a Radon measures on Ω. We also establish the inverse maximum principle for ∆p.
关于∆pu为测度时加藤不等式的注解
设Ω为R (N≥1)的有界域。在本文中,我们将研究当∆pu为测度时的Kato不等式,其中∆pu表示1 < p <∞的p-拉普拉斯算子。经典拉普拉斯不等式断言给定任意函数u∈Lloc(Ω),使得∆u∈Lloc(Ω),则∆(u)是Radon测度,并且以下成立:∆(u)≥χ[u≥0]∆u in D ' (Ω)。我们的主要结果将加藤不等式推广到∆pu是Ω上的Radon测度的情况。我们还建立了∆p的逆极大值原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信