Lower bound on the size of a quasirandom forcing set of permutations

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Martin Kurečka
{"title":"Lower bound on the size of a quasirandom forcing set of permutations","authors":"Martin Kurečka","doi":"10.1017/S0963548321000298","DOIUrl":null,"url":null,"abstract":"\n A set S of permutations is forcing if for any sequence \n \n \n \n$\\{\\Pi_i\\}_{i \\in \\mathbb{N}}$\n\n \n of permutations where the density \n \n \n \n$d(\\pi,\\Pi_i)$\n\n \n converges to \n \n \n \n$\\frac{1}{|\\pi|!}$\n\n \n for every permutation \n \n \n \n$\\pi \\in S$\n\n \n , it holds that \n \n \n \n$\\{\\Pi_i\\}_{i \\in \\mathbb{N}}$\n\n \n is quasirandom. Graham asked whether there exists an integer k such that the set of all permutations of order k is forcing; this has been shown to be true for any \n \n \n \n$k\\ge 4$\n\n \n . In particular, the set of all 24 permutations of order 4 is forcing. We provide the first non-trivial lower bound on the size of a forcing set of permutations: every forcing set of permutations (with arbitrary orders) contains at least four permutations.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":"55 1","pages":"304-319"},"PeriodicalIF":0.9000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548321000298","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 6

Abstract

A set S of permutations is forcing if for any sequence $\{\Pi_i\}_{i \in \mathbb{N}}$ of permutations where the density $d(\pi,\Pi_i)$ converges to $\frac{1}{|\pi|!}$ for every permutation $\pi \in S$ , it holds that $\{\Pi_i\}_{i \in \mathbb{N}}$ is quasirandom. Graham asked whether there exists an integer k such that the set of all permutations of order k is forcing; this has been shown to be true for any $k\ge 4$ . In particular, the set of all 24 permutations of order 4 is forcing. We provide the first non-trivial lower bound on the size of a forcing set of permutations: every forcing set of permutations (with arbitrary orders) contains at least four permutations.
准随机强迫排列集大小的下界
一组S的排列是强制的,如果对于任意排列序列$\{\Pi_i\}_{i \in \mathbb{N}}$,其中密度$d(\pi,\Pi_i)$收敛于$\frac{1}{|\pi|!}$对于每个排列$\pi \in S$,则认为$\{\Pi_i\}_{i \in \mathbb{N}}$是准随机的。Graham问是否存在一个整数k使得所有k阶排列的集合是强制的;这已被证明对任何$k\ge 4$都是正确的。特别地,所有24个4阶排列的集合是强制的。我们提供了排列强迫集大小的第一个非平凡下界:每个排列强迫集(任意顺序)至少包含四个排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信