{"title":"Investigation of color differences in the reproduction of memorable colors on visualization devices","authors":"O. Guryanova, A. Gnibeda, E. Filimonova","doi":"10.37791/2687-0649-2021-16-6-113-130","DOIUrl":null,"url":null,"abstract":"This work is devoted to the study of changes in color coordinates on various visualization devices during color reproduction, in particular smartphones, as one of the most commonly used devices in the modern world, which is associated with the hardware dependence of the color reproduction system. The purpose of the work is to select visualization tools, determine their technical characteristics, determine test colors for visualization on various devices, determine the tolerances in reproduction of each color when using various viewing devices. To achieve the goal, such tasks were set as the selection of images containing memorable colors. These colors are fundamental in determining the tolerances in color reproduction, since information about them is inherent in each person on the basis of his life experience and knowledge, and a change in the reproduction of memorable colors, a violation in color rendering, is the most visually noticeable. Memorable colors are converted into samples – test objects, which are used to determine coordinates in a device-independent color space. Determination of tolerances is made when changing color reproduction through the use of selective (color) correction. When solving the problem, it was noted that there are colors in which, with small changes in color coordinates, the visual component changes to a sufficiently strong degree, while other colors, with a numerically identical change, do not visually change. For the selected colors on various visualization tools, the difference in color reproduction is calculated and the calculations of color differences for different models of viewing devices with a visual difference in perception are given.","PeriodicalId":44195,"journal":{"name":"Journal of Applied Mathematics & Informatics","volume":"68 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics & Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37791/2687-0649-2021-16-6-113-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This work is devoted to the study of changes in color coordinates on various visualization devices during color reproduction, in particular smartphones, as one of the most commonly used devices in the modern world, which is associated with the hardware dependence of the color reproduction system. The purpose of the work is to select visualization tools, determine their technical characteristics, determine test colors for visualization on various devices, determine the tolerances in reproduction of each color when using various viewing devices. To achieve the goal, such tasks were set as the selection of images containing memorable colors. These colors are fundamental in determining the tolerances in color reproduction, since information about them is inherent in each person on the basis of his life experience and knowledge, and a change in the reproduction of memorable colors, a violation in color rendering, is the most visually noticeable. Memorable colors are converted into samples – test objects, which are used to determine coordinates in a device-independent color space. Determination of tolerances is made when changing color reproduction through the use of selective (color) correction. When solving the problem, it was noted that there are colors in which, with small changes in color coordinates, the visual component changes to a sufficiently strong degree, while other colors, with a numerically identical change, do not visually change. For the selected colors on various visualization tools, the difference in color reproduction is calculated and the calculations of color differences for different models of viewing devices with a visual difference in perception are given.