Closed ideals in the uniform topology on the ring of real-valued continuous functions on a frame

M. Abedi, A. Estaji
{"title":"Closed ideals in the uniform topology on the ring of real-valued continuous functions on a frame","authors":"M. Abedi, A. Estaji","doi":"10.4171/rsmup/43","DOIUrl":null,"url":null,"abstract":"For a completely regular frame L, the ring RL of real-valued continuous functions on L is equipped with the uniform topology. The closed ideals of RL in this topology are studied, and a new, merely algebraic characterization of these ideals is given. This result is used to describe the real ideals of RL, and to characterize pseudocompact frames and Lindelöf frames. It is shown that a frame L is finite if and only if every ideal of RL is closed. Finally, we prove that every closed ideal in RL is an intersection of maximal ideals. Mathematics Subject Classification (2010). Primary: 06D22; Secondary: 54C40, 54C50, 16D25, 13J20.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"15 1","pages":"135-152"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a completely regular frame L, the ring RL of real-valued continuous functions on L is equipped with the uniform topology. The closed ideals of RL in this topology are studied, and a new, merely algebraic characterization of these ideals is given. This result is used to describe the real ideals of RL, and to characterize pseudocompact frames and Lindelöf frames. It is shown that a frame L is finite if and only if every ideal of RL is closed. Finally, we prove that every closed ideal in RL is an intersection of maximal ideals. Mathematics Subject Classification (2010). Primary: 06D22; Secondary: 54C40, 54C50, 16D25, 13J20.
系上实值连续函数环上一致拓扑的闭理想
对于完全正则坐标系L, L上实值连续函数的环RL具有一致拓扑。研究了该拓扑下RL的闭理想,给出了这些理想的一个新的纯代数表征。该结果用于描述RL的实理想,并用于描述伪紧坐标系和Lindelöf坐标系。证明了坐标系L是有限的当且仅当RL的所有理想都是闭合的。最后,我们证明了RL中的每一个封闭理想都是极大理想的交集。数学学科分类(2010)。主:06 d22摊位;次级:54C40, 54C50, 16D25, 13J20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信