{"title":"Statistical Performance Modeling and Optimization","authors":"Xin Li, Jiayong Le, L. Pileggi","doi":"10.1561/1000000008","DOIUrl":null,"url":null,"abstract":"As IC technologies scale to finer feature sizes, it becomes increasingly difficult to control the relative process variations. The increasing fluctuations in manufacturing processes have introduced unavoidable and significant uncertainty in circuit performance; hence ensuring manufacturability has been identified as one of the top priorities of today's IC design problems. In this paper, we review various statistical methodologies that have been recently developed to model, analyze, and optimize performance variations at both transistor level and system level. The following topics will be discussed in detail: sources of process variations, variation characterization and modeling, Monte Carlo analysis, response surface modeling, statistical timing and leakage analysis, probability distribution extraction, parametric yield estimation and robust IC optimization. These techniques provide the necessary CAD infrastructure that facilitates the bold move from deterministic, corner-based IC design toward statistical and probabilistic design.","PeriodicalId":42137,"journal":{"name":"Foundations and Trends in Electronic Design Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Electronic Design Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1000000008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 65
Abstract
As IC technologies scale to finer feature sizes, it becomes increasingly difficult to control the relative process variations. The increasing fluctuations in manufacturing processes have introduced unavoidable and significant uncertainty in circuit performance; hence ensuring manufacturability has been identified as one of the top priorities of today's IC design problems. In this paper, we review various statistical methodologies that have been recently developed to model, analyze, and optimize performance variations at both transistor level and system level. The following topics will be discussed in detail: sources of process variations, variation characterization and modeling, Monte Carlo analysis, response surface modeling, statistical timing and leakage analysis, probability distribution extraction, parametric yield estimation and robust IC optimization. These techniques provide the necessary CAD infrastructure that facilitates the bold move from deterministic, corner-based IC design toward statistical and probabilistic design.
期刊介绍:
Foundations and Trends® in Electronic Design Automation publishes survey and tutorial articles in the following topics: - System Level Design - Behavioral Synthesis - Logic Design - Verification - Test - Physical Design - Circuit Level Design - Reconfigurable Systems - Analog Design Each issue of Foundations and Trends® in Electronic Design Automation comprises a 50-100 page monograph written by research leaders in the field.