Simba: spatial in-memory big data analysis

Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, M. Guo
{"title":"Simba: spatial in-memory big data analysis","authors":"Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, M. Guo","doi":"10.1145/2996913.2996935","DOIUrl":null,"url":null,"abstract":"We present the Simba (Spatial In-Memory Big data Analytics) system, which offers scalable and efficient in-memory spatial query processing and analytics for big spatial data. Simba natively extends the Spark SQL engine to support rich spatial queries and analytics through both SQL and DataFrame API. It enables the construction of indexes over RDDs inside the engine in order to work with big spatial data and complex spatial operations. Simba also comes with an effective query optimizer, which leverages its indexes and novel spatial-aware optimizations, to achieve both low latency and high throughput in big spatial data analysis. This demonstration proposal describes key ideas in the design of Simba, and presents a demonstration plan.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We present the Simba (Spatial In-Memory Big data Analytics) system, which offers scalable and efficient in-memory spatial query processing and analytics for big spatial data. Simba natively extends the Spark SQL engine to support rich spatial queries and analytics through both SQL and DataFrame API. It enables the construction of indexes over RDDs inside the engine in order to work with big spatial data and complex spatial operations. Simba also comes with an effective query optimizer, which leverages its indexes and novel spatial-aware optimizations, to achieve both low latency and high throughput in big spatial data analysis. This demonstration proposal describes key ideas in the design of Simba, and presents a demonstration plan.
Simba:空间内存大数据分析
我们提出了Simba(空间内存大数据分析)系统,它为大空间数据提供了可扩展和高效的内存空间查询处理和分析。Simba原生扩展了Spark SQL引擎,通过SQL和DataFrame API支持丰富的空间查询和分析。它支持在引擎内部的rdd上构建索引,以便处理大空间数据和复杂的空间操作。Simba还附带了一个有效的查询优化器,它利用其索引和新颖的空间感知优化,在大空间数据分析中实现低延迟和高吞吐量。本演示提案描述了Simba设计中的关键思想,并给出了演示计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信