P. Lubin, M. Pelizzo, Jacob Erlikhman, A. Cohen, J. Madajian, P. Meinhold, G. Hughes, Nic Rupert, P. Srinivasan
{"title":"Remote molecular composition analysis of laser-ablated material","authors":"P. Lubin, M. Pelizzo, Jacob Erlikhman, A. Cohen, J. Madajian, P. Meinhold, G. Hughes, Nic Rupert, P. Srinivasan","doi":"10.1080/05704928.2021.1966634","DOIUrl":null,"url":null,"abstract":"Abstract A novel method is described for remotely interrogating bulk molecular composition of rocky materials. Laser energy heats a local area on the substrate; flux is optimized to melt and evaporate target constituents with low rates of molecular dissociation. Substrate temperature rises until an equilibrium is established between incident flux and latent phase-change energies, reaching ˜2500 K in vacuum. A blackbody signal is emitted by the heated spot, traveling outward through the evaporated material; reflective optics direct the signal into a spectrometer. Ro-vibrational absorption in the plume provides a diagnostic for identifying bulk molecular composition of the substrate. Absorption spectra are modeled for compounds with available a priori molecular cross-sections, based on laser and receiver characteristics, and target material properties. Mass ejection flux drives the plume density profile. Qualitative, species-specific spectral profiles are derived by integrating molecular cross section along a path through the plume. Simulations indicate robust absorption profiles.","PeriodicalId":8100,"journal":{"name":"Applied Spectroscopy Reviews","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/05704928.2021.1966634","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A novel method is described for remotely interrogating bulk molecular composition of rocky materials. Laser energy heats a local area on the substrate; flux is optimized to melt and evaporate target constituents with low rates of molecular dissociation. Substrate temperature rises until an equilibrium is established between incident flux and latent phase-change energies, reaching ˜2500 K in vacuum. A blackbody signal is emitted by the heated spot, traveling outward through the evaporated material; reflective optics direct the signal into a spectrometer. Ro-vibrational absorption in the plume provides a diagnostic for identifying bulk molecular composition of the substrate. Absorption spectra are modeled for compounds with available a priori molecular cross-sections, based on laser and receiver characteristics, and target material properties. Mass ejection flux drives the plume density profile. Qualitative, species-specific spectral profiles are derived by integrating molecular cross section along a path through the plume. Simulations indicate robust absorption profiles.
期刊介绍:
Applied Spectroscopy Reviews provides the latest information on the principles, methods, and applications of all the diverse branches of spectroscopy, from X-ray, infrared, Raman, atomic absorption, and ESR to microwave, mass, NQR, NMR, and ICP. This international, single-source journal presents discussions that relate physical concepts to chemical applications for chemists, physicists, and other scientists using spectroscopic techniques.