Steady-state inhomogeneous diffusion with generalized oblique boundary conditions

IF 1.9 3区 数学 Q2 Mathematics
A. Bradji, D. Lesnic
{"title":"Steady-state inhomogeneous diffusion with generalized oblique boundary conditions","authors":"A. Bradji, D. Lesnic","doi":"10.1051/m2an/2023063","DOIUrl":null,"url":null,"abstract":"We consider the elliptic diffusion (steady-state heat conduction) equation with space-dependent conductivity and inhomogeneous source subject to a generalized oblique boundary condition on a part of the boundary and Dirichlet or Neumann boundary conditions on the remaining part. The oblique boundary condition represents a linear combination between the dependent variable and its normal and tangential derivatives at the boundary. We first prove the well- posedness of the continuous problems. We then develop new finite volume schemes for these problems and prove rigorously the stability and convergence of these schemes. We also address an application to the inverse corrosion problem concerning the reconstruction of the coefficients present in the generalized oblique boundary condition that is prescribed over a portion $\\Gamma_{0}$ of the boundary $\\partial \\Omega$ from Cauchy data on the complementary portion $\\Gamma_{1} = \\partial \\Omega \\backslash \\Gamma_{0}$.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023063","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the elliptic diffusion (steady-state heat conduction) equation with space-dependent conductivity and inhomogeneous source subject to a generalized oblique boundary condition on a part of the boundary and Dirichlet or Neumann boundary conditions on the remaining part. The oblique boundary condition represents a linear combination between the dependent variable and its normal and tangential derivatives at the boundary. We first prove the well- posedness of the continuous problems. We then develop new finite volume schemes for these problems and prove rigorously the stability and convergence of these schemes. We also address an application to the inverse corrosion problem concerning the reconstruction of the coefficients present in the generalized oblique boundary condition that is prescribed over a portion $\Gamma_{0}$ of the boundary $\partial \Omega$ from Cauchy data on the complementary portion $\Gamma_{1} = \partial \Omega \backslash \Gamma_{0}$.
广义斜边界条件下的稳态非齐次扩散
我们考虑具有空间相关电导率和非均匀源的椭圆扩散(稳态热传导)方程,该方程的一部分边界满足广义斜边界条件,其余部分满足狄利克雷或诺伊曼边界条件。斜边界条件表示因变量与其在边界处的法向导数和切向导数之间的线性组合。首先证明了连续问题的适定性。然后,我们为这些问题开发了新的有限体积格式,并严格证明了这些格式的稳定性和收敛性。我们还解决了反腐蚀问题的一个应用,该问题涉及广义斜边界条件中存在的系数的重建,该条件是根据柯西数据在互补部分$\Gamma_{1} = \partial \Omega \backslash \Gamma_{0}$上规定的部分$\Gamma_{0}$边界$\partial \Omega$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信