Anis Kaci, Angelica Torres, F. Giraud, C. Giraud-Audine, M. Amberg, B. Lemaire-Semail
{"title":"Fundamental Acoustical Finger Force Calculation for Out-of-Plane Ultrasonic Vibration and its Correlation with Friction Reduction","authors":"Anis Kaci, Angelica Torres, F. Giraud, C. Giraud-Audine, M. Amberg, B. Lemaire-Semail","doi":"10.1109/WHC.2019.8816168","DOIUrl":null,"url":null,"abstract":"When a finger touches an ultrasonic vibrating plate, non-sinusoidal contact force appears, named acoustical finger force. In this paper, we present a method to observe its fundamental in the case of a friction reduction haptic interface. The capability of the method to be achieved on-line, in a small micro-controller, is established. We show a correlation between this measurement and the friction when sliding the finger. A model that predicts the friction coefficient and the friction contrast is laid down; it gives consistent output for 10 participants out of 12 having different biomechanical skin parameters of the skin.","PeriodicalId":6702,"journal":{"name":"2019 IEEE World Haptics Conference (WHC)","volume":"70 1","pages":"413-418"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE World Haptics Conference (WHC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2019.8816168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
When a finger touches an ultrasonic vibrating plate, non-sinusoidal contact force appears, named acoustical finger force. In this paper, we present a method to observe its fundamental in the case of a friction reduction haptic interface. The capability of the method to be achieved on-line, in a small micro-controller, is established. We show a correlation between this measurement and the friction when sliding the finger. A model that predicts the friction coefficient and the friction contrast is laid down; it gives consistent output for 10 participants out of 12 having different biomechanical skin parameters of the skin.