Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals

Daniel Coutand, Steve Shkoller
{"title":"Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals","authors":"Daniel Coutand,&nbsp;Steve Shkoller","doi":"10.1016/S0764-4442(01)02161-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Ericksen–Leslie model of nematic liquid crystals is a coupled system between the Navier–Stokes and the Ginzburg–Landau equations. We show here the local well-posedness for this problem for any initial data regular enough, by a fixed point approach relying on some weak continuity properties in a suitable functional setting. By showing the existence of an appropriate local Lyapunov functional, we also give sufficient conditions for the global existence of the solution, and some stability conditions.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 10","pages":"Pages 919-924"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02161-9","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Ericksen–Leslie model of nematic liquid crystals is a coupled system between the Navier–Stokes and the Ginzburg–Landau equations. We show here the local well-posedness for this problem for any initial data regular enough, by a fixed point approach relying on some weak continuity properties in a suitable functional setting. By showing the existence of an appropriate local Lyapunov functional, we also give sufficient conditions for the global existence of the solution, and some stability conditions.

向列液晶的Ericksen-Leslie模型的完备性
向列液晶的Ericksen-Leslie模型是Navier-Stokes方程和Ginzburg-Landau方程之间的耦合系统。我们在这里展示了对于任何足够正则的初始数据,在一个合适的函数设置中,依靠一些弱连续性的不动点方法,这个问题的局部适定性。通过证明一个适当的局部Lyapunov泛函的存在性,给出了解的整体存在性的充分条件,以及一些稳定性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信