Data Filtration and Clustering for Purposes of Petroleum Quality Indicators Computation Using Situational Models

A. Verevkin, T. Murtazin, S. Denisov, Konstantin Y. Ustyuzhanin
{"title":"Data Filtration and Clustering for Purposes of Petroleum Quality Indicators Computation Using Situational Models","authors":"A. Verevkin, T. Murtazin, S. Denisov, Konstantin Y. Ustyuzhanin","doi":"10.2991/ITIDS-19.2019.10","DOIUrl":null,"url":null,"abstract":"Generally, advanced process control systems (APC-systems) base on using technological process models tolerating output quality indicators (OQI) and technical and economic indexes (TEI) forecasting “on the fly”. There are many techniques of OQI and TEI evaluation in existence, except one used to work with static information (for example, results of passive experiments) for parametric identification. In addition, control systems store operating parameter’s data in its database in a shape of time sequences without any validation or testing for homogeneity. Inhomogeneity of the data drops model quality to the state, when data makes it impossible to develop a situational model without pre-processing and cluster separation, according to which one creates the situational model. This article considers filtration and clustering techniques of APC historical data, including information about technological mode and used OQIs. Described filtering and clustering solutions based on parity models and technological measures cross-correlation techniques; their implication presented on the example of multioutput fractionating tower. Keywords—advanced control, homogeneous data situational modeling, clustering, data analysis","PeriodicalId":63242,"journal":{"name":"科学决策","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"科学决策","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.2991/ITIDS-19.2019.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generally, advanced process control systems (APC-systems) base on using technological process models tolerating output quality indicators (OQI) and technical and economic indexes (TEI) forecasting “on the fly”. There are many techniques of OQI and TEI evaluation in existence, except one used to work with static information (for example, results of passive experiments) for parametric identification. In addition, control systems store operating parameter’s data in its database in a shape of time sequences without any validation or testing for homogeneity. Inhomogeneity of the data drops model quality to the state, when data makes it impossible to develop a situational model without pre-processing and cluster separation, according to which one creates the situational model. This article considers filtration and clustering techniques of APC historical data, including information about technological mode and used OQIs. Described filtering and clustering solutions based on parity models and technological measures cross-correlation techniques; their implication presented on the example of multioutput fractionating tower. Keywords—advanced control, homogeneous data situational modeling, clustering, data analysis
基于情景模型的石油质量指标计算数据过滤与聚类
一般来说,先进的过程控制系统(apc系统)是基于使用工艺过程模型来进行输出质量指标(OQI)和技术经济指标(TEI)的“动态”预测。除了使用静态信息(例如被动实验结果)进行参数识别之外,现有的OQI和TEI评估技术有很多。此外,控制系统将运行参数数据以时间序列的形式存储在其数据库中,而无需进行任何验证或同质性测试。数据的非同质性降低了模型的质量,如果没有预处理和集群分离,就不可能开发情景模型,根据这种状态创建情景模型。本文考虑了APC历史数据的过滤和聚类技术,包括技术模式和使用的oqi信息。描述了基于奇偶模型和技术措施的过滤和聚类解决方案;以多输出分馏塔为例,给出了其意义。关键词:高级控制,同构数据情景建模,聚类,数据分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
4015
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信