Sabine Pils , Kordula Schnabl , Silvia Wallner , Marko Kljajic , Nina Kupresanin , Rolf Breinbauer , Michael Fuchs , Raquel Rocha , Joerg H. Schrittwieser , Wolfgang Kroutil , Bastian Daniel , Peter Macheroux
{"title":"Characterization of the monolignol oxidoreductase AtBBE-like protein 15 L182V for biocatalytic applications","authors":"Sabine Pils , Kordula Schnabl , Silvia Wallner , Marko Kljajic , Nina Kupresanin , Rolf Breinbauer , Michael Fuchs , Raquel Rocha , Joerg H. Schrittwieser , Wolfgang Kroutil , Bastian Daniel , Peter Macheroux","doi":"10.1016/j.molcatb.2016.10.018","DOIUrl":null,"url":null,"abstract":"<div><p>Monolignol oxidoreductases from the berberine bridge enzyme-like (BBE-like) protein family (pfam 08031) catalyze the oxidation of monolignols to the corresponding aldehydes. In this report, we explore the potential of a monolignol oxidoreductase from <em>Arabidopsis thaliana</em> (<em>At</em>BBE-like protein 15) as biocatalyst for oxidative reactions. For this study we employed a variant with enhanced reactivity towards oxygen, which was obtained by a single amino acid exchange (L182V). The pH and temperature optima of the purified <em>At</em>BBE-like protein 15 L182V were determined as well as the tolerance toward organic co-solvents; furthermore the substrate scope was characterized. The enzyme has a temperature optimum of 50<!--> <!-->°C and retains more than 50% activity between pH 5 and pH 10 within 5<!--> <!-->min. The enzyme shows increased activity in the presence of various co-solvents (10–50% v/v), including acetonitrile, 2-propanol, 1,4-dioxane, and dimethyl sulfoxide. Primary benzylic and primary or secondary allylic alcohols were accepted as substrates. The enantioselectivity <em>E</em> in the oxidation of secondary alcohols was good to excellent (<em>E</em>>34 to >200).</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages S6-S14"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.10.018","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716302120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
Monolignol oxidoreductases from the berberine bridge enzyme-like (BBE-like) protein family (pfam 08031) catalyze the oxidation of monolignols to the corresponding aldehydes. In this report, we explore the potential of a monolignol oxidoreductase from Arabidopsis thaliana (AtBBE-like protein 15) as biocatalyst for oxidative reactions. For this study we employed a variant with enhanced reactivity towards oxygen, which was obtained by a single amino acid exchange (L182V). The pH and temperature optima of the purified AtBBE-like protein 15 L182V were determined as well as the tolerance toward organic co-solvents; furthermore the substrate scope was characterized. The enzyme has a temperature optimum of 50 °C and retains more than 50% activity between pH 5 and pH 10 within 5 min. The enzyme shows increased activity in the presence of various co-solvents (10–50% v/v), including acetonitrile, 2-propanol, 1,4-dioxane, and dimethyl sulfoxide. Primary benzylic and primary or secondary allylic alcohols were accepted as substrates. The enantioselectivity E in the oxidation of secondary alcohols was good to excellent (E>34 to >200).
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.