The structural disconnectome: A pathology-sensitive extension of the structural connectome

C. Langen, M. Vernooij, L. Cremers, Wyke Huizinga, M. Groot, M. Ikram, T. White, W. Niessen
{"title":"The structural disconnectome: A pathology-sensitive extension of the structural connectome","authors":"C. Langen, M. Vernooij, L. Cremers, Wyke Huizinga, M. Groot, M. Ikram, T. White, W. Niessen","doi":"10.1109/ISBI.2017.7950539","DOIUrl":null,"url":null,"abstract":"Brain connectivity is increasingly being studied using connectomes. Typical structural connectome definitions do not directly take white matter pathology into account. Presumably, pathology impedes signal transmission along fibres, leading to a reduction in function. In order to directly study disconnection and localize pathology within the connectome, we present the disconnectome, which only considers fibres that intersect with white matter pathology. To show the potential of the disconnectome in brain studies, we showed in a cohort of 4199 adults with varying loads of white matter lesions (WMLs) that: (1) Disconnection is not a function of streamline density; (2) Hubs are more affected by WMLs than peripheral nodes; (3) Connections between hubs are more severely and frequently affected by WMLs than other connection types; and (4) Connections between region clusters are often more severely affected than those within clusters.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Brain connectivity is increasingly being studied using connectomes. Typical structural connectome definitions do not directly take white matter pathology into account. Presumably, pathology impedes signal transmission along fibres, leading to a reduction in function. In order to directly study disconnection and localize pathology within the connectome, we present the disconnectome, which only considers fibres that intersect with white matter pathology. To show the potential of the disconnectome in brain studies, we showed in a cohort of 4199 adults with varying loads of white matter lesions (WMLs) that: (1) Disconnection is not a function of streamline density; (2) Hubs are more affected by WMLs than peripheral nodes; (3) Connections between hubs are more severely and frequently affected by WMLs than other connection types; and (4) Connections between region clusters are often more severely affected than those within clusters.
结构断连组:结构连接组的病理敏感延伸
越来越多的人使用连接体来研究大脑的连通性。典型的结构连接组定义不直接考虑白质病理学。据推测,病理阻碍了沿纤维的信号传递,导致功能下降。为了直接研究断连和定位连接组内的病理,我们提出了断连组,它只考虑与白质病理相交的纤维。为了显示断连组在脑研究中的潜力,我们对4199名患有不同白质病变(WMLs)的成年人进行了队列研究,结果表明:(1)断连不是流线密度的函数;(2) hub受wml的影响大于周边节点;(3)集线器之间的连接受wml的影响比其他类型的连接更严重、更频繁;(4)区域集群之间的连接往往比集群内部的连接受到更严重的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信