{"title":"Evaluation of Inverse Fourier Pressure Integrals for Finite Acoustic Sources on Cylindrical Baffles","authors":"J. Valacas","doi":"10.1142/S259172851950004X","DOIUrl":null,"url":null,"abstract":"For various types of finite acoustic sources placed on an infinite cylindrical baffle, the pressure solution in cylindrical coordinates can be given by an infinite series of Inverse Fourier Integrals involving a singular quotient of Hankel functions. A hybrid method is introduced addressing these integrals’ singularity analytically and truncating their infinite integration range with predictable error. Maximum number of significant terms to be taken into account is discussed and determined. Results are obtained for a wide range of dimensionless frequency values ([Formula: see text]–100) and observation point distances ranging from 3 to 100 radii of the cylindrical baffle. As an application, the baffle diffraction step of the infinite cylindrical baffle is evaluated for the on-axis pressure of a uniformly-vibrating piston.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"113 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S259172851950004X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
For various types of finite acoustic sources placed on an infinite cylindrical baffle, the pressure solution in cylindrical coordinates can be given by an infinite series of Inverse Fourier Integrals involving a singular quotient of Hankel functions. A hybrid method is introduced addressing these integrals’ singularity analytically and truncating their infinite integration range with predictable error. Maximum number of significant terms to be taken into account is discussed and determined. Results are obtained for a wide range of dimensionless frequency values ([Formula: see text]–100) and observation point distances ranging from 3 to 100 radii of the cylindrical baffle. As an application, the baffle diffraction step of the infinite cylindrical baffle is evaluated for the on-axis pressure of a uniformly-vibrating piston.
期刊介绍:
The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics.
Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.