Self-propagating High-temperature Synthesis of Materials Based on Tungsten Carbide for One-Pot Hydrolysis-Hydrogenolysis of Cellulose Into Ethylene Glycol and 1,2-Propylene Glycol

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY
N. Gromov, Тatiana B. Medvedeva, I. A. Lukoyanov, A. A. Zhdanok, V. A. Poluboyarov, Оxana P. Тaran, V. Parmon, M. Timofeeva
{"title":"Self-propagating High-temperature Synthesis of Materials Based on Tungsten Carbide for One-Pot Hydrolysis-Hydrogenolysis of Cellulose Into Ethylene Glycol and 1,2-Propylene Glycol","authors":"N. Gromov, Тatiana B. Medvedeva, I. A. Lukoyanov, A. A. Zhdanok, V. A. Poluboyarov, Оxana P. Тaran, V. Parmon, M. Timofeeva","doi":"10.17516/1998-2836-0125","DOIUrl":null,"url":null,"abstract":"Catalytic systems based on tungsten carbide (WnC) containing mainly W2C were obtained by the method of self-propagating high-temperature synthesis from a mechanochemically activated mixture of tungsten oxide, metallic magnesium, carbon black and CaCO3. The phase composition of the formed materials was shown to depend on the amount of CaCO3. The catalytic properties of the materials were tested in the hydrolysis-hydrogenation of cellulose to ethylene glycol (EG) and 1,2-propylene glycol (PG). It was established that in the presence of WnC the main products of the reaction were EG and PG with a ratio of PG/EG – 1.5-1.8. The deposition of nickel nanoparticles on the WnC surface increased the reaction rate and product yields. The maximum total yield of diols was 47.1 mol. %.","PeriodicalId":16999,"journal":{"name":"Journal of Siberian Federal University. Chemistry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1998-2836-0125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Catalytic systems based on tungsten carbide (WnC) containing mainly W2C were obtained by the method of self-propagating high-temperature synthesis from a mechanochemically activated mixture of tungsten oxide, metallic magnesium, carbon black and CaCO3. The phase composition of the formed materials was shown to depend on the amount of CaCO3. The catalytic properties of the materials were tested in the hydrolysis-hydrogenation of cellulose to ethylene glycol (EG) and 1,2-propylene glycol (PG). It was established that in the presence of WnC the main products of the reaction were EG and PG with a ratio of PG/EG – 1.5-1.8. The deposition of nickel nanoparticles on the WnC surface increased the reaction rate and product yields. The maximum total yield of diols was 47.1 mol. %.
基于碳化钨的一锅水解-纤维素氢解制备乙二醇和1,2-丙二醇材料的自蔓延高温合成
以氧化钨、金属镁、炭黑和CaCO3为原料,采用机械化学活化的混合物,采用自蔓延高温合成方法制备了以W2C为主要成分的碳化钨(WnC)催化体系。形成的材料的相组成取决于CaCO3的量。在纤维素水解加氢制乙二醇(EG)和1,2-丙二醇(PG)过程中测试了材料的催化性能。结果表明,在WnC存在下,反应的主要产物为EG和PG, PG/EG - 1.5 ~ 1.8。纳米镍颗粒沉积在WnC表面,提高了反应速率和产物收率。二醇的最大总得率为47.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信