The autoregressive filter problem for multivariable degree one symmetric polynomials

IF 0.5 Q3 MATHEMATICS
Jeffrey S. Geronimo, Hugo J. Woerdeman, Chung Y. Wong
{"title":"The autoregressive filter problem for multivariable degree one symmetric polynomials","authors":"Jeffrey S. Geronimo,&nbsp;Hugo J. Woerdeman,&nbsp;Chung Y. Wong","doi":"10.1007/s44146-023-00072-z","DOIUrl":null,"url":null,"abstract":"<div><p>The multivariable autoregressive filter problem asks for a polynomial <span>\\(p(z)=p(z_1, \\ldots , z_d)\\)</span> without roots in the closed <i>d</i>-disk based on prescribed Fourier coefficients of its spectral density function <span>\\(1/|p(z)|^2\\)</span>. The conditions derived in this paper for the construction of a degree one symmetric polynomial reveal a major divide between the case of at most two variables vs. the the case of three or more variables. The latter involves multivariable elliptic functions, while the former (due to [Geronimo and Woerdeman (Ann Math 160(3):839-906, 2004)]) only involve polynomials. The three variable case is treated with more detail, and entails hypergeometric functions. Along the way, we identify a seemingly new relation between <span>\\({}_2 F_{1}\\left( {\\frac{1}{3},\\frac{2}{3}\\atop 1}; \\ z\\right) \\)</span> and <span>\\({}_2 F_{1}\\left( {\\frac{1}{2},\\frac{1}{2}\\atop 1}; \\ \\widetilde{z}\\right) \\)</span>.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"509 - 532"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00072-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The multivariable autoregressive filter problem asks for a polynomial \(p(z)=p(z_1, \ldots , z_d)\) without roots in the closed d-disk based on prescribed Fourier coefficients of its spectral density function \(1/|p(z)|^2\). The conditions derived in this paper for the construction of a degree one symmetric polynomial reveal a major divide between the case of at most two variables vs. the the case of three or more variables. The latter involves multivariable elliptic functions, while the former (due to [Geronimo and Woerdeman (Ann Math 160(3):839-906, 2004)]) only involve polynomials. The three variable case is treated with more detail, and entails hypergeometric functions. Along the way, we identify a seemingly new relation between \({}_2 F_{1}\left( {\frac{1}{3},\frac{2}{3}\atop 1}; \ z\right) \) and \({}_2 F_{1}\left( {\frac{1}{2},\frac{1}{2}\atop 1}; \ \widetilde{z}\right) \).

多变量一元对称多项式的自回归滤波问题
多变量自回归滤波问题要求基于谱密度函数\(1/|p(z)|^2\)的规定傅里叶系数在封闭d盘中求一个无根的多项式\(p(z)=p(z_1, \ldots , z_d)\)。本文导出的构造一次对称多项式的条件揭示了至多两个变量的情况与三个或更多变量的情况之间的主要区别。后者涉及多变量椭圆函数,而前者(由于[Geronimo和Woerdeman (Ann Math 160(3):839-906, 2004)])只涉及多项式。三个变量的情况更详细地处理,并涉及超几何函数。在此过程中,我们发现了\({}_2 F_{1}\left( {\frac{1}{3},\frac{2}{3}\atop 1}; \ z\right) \)和\({}_2 F_{1}\left( {\frac{1}{2},\frac{1}{2}\atop 1}; \ \widetilde{z}\right) \)之间的一种看似新的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信