Restrained {2}-domination in graphs

K. Haghparast, J. Amjadi, M. Chellali, S. M. Sheikholeslami
{"title":"Restrained {2}-domination in graphs","authors":"K. Haghparast, J. Amjadi, M. Chellali, S. M. Sheikholeslami","doi":"10.1051/ro/2023120","DOIUrl":null,"url":null,"abstract":"A restrained $\\{2\\}$-dominating function (R$\\{2\\}$-DF) on a graph $G=(V,E)$ is\na function $f:V\\rightarrow\\{0,1,2\\}$ such that : \\textrm{(i)} $f(N[v])\\geq2$\nfor all $v\\in V,$ where $N[v]$ is the set containing $v$ and all vertices\nadjacent to $v;$ \\textrm{(ii)} the subgraph induced by the vertices assigned 0\nunder $f$ has no isolated vertices. The weight of an R$\\{2\\}$-DF is the sum of\nits function values over all vertices, and the restrained $\\{2\\}$-domination\nnumber $\\gamma_{r\\{2\\}}(G)$ is the minimum weight of an R$\\{2\\}$-DF on $G.$ In\nthis paper, we initiate the study of the restrained $\\{2\\}$-domination number.\nWe first prove that the problem of computing this parameter is NP-complete,\neven when restricted to bipartite graphs. Then we give various\nbounds on this parameter. In particular, we establish upper and\nlower bound on the restrained $\\{2\\}$-domination number of a tree $T$ in terms\nof the order, the numbers of leaves and support vertices.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A restrained $\{2\}$-dominating function (R$\{2\}$-DF) on a graph $G=(V,E)$ is a function $f:V\rightarrow\{0,1,2\}$ such that : \textrm{(i)} $f(N[v])\geq2$ for all $v\in V,$ where $N[v]$ is the set containing $v$ and all vertices adjacent to $v;$ \textrm{(ii)} the subgraph induced by the vertices assigned 0 under $f$ has no isolated vertices. The weight of an R$\{2\}$-DF is the sum of its function values over all vertices, and the restrained $\{2\}$-domination number $\gamma_{r\{2\}}(G)$ is the minimum weight of an R$\{2\}$-DF on $G.$ In this paper, we initiate the study of the restrained $\{2\}$-domination number. We first prove that the problem of computing this parameter is NP-complete, even when restricted to bipartite graphs. Then we give various bounds on this parameter. In particular, we establish upper and lower bound on the restrained $\{2\}$-domination number of a tree $T$ in terms of the order, the numbers of leaves and support vertices.
图中的克制{2}支配
图$G=(V,E)$上的一个约束$\{2\}$支配函数(R $\{2\}$ -DF)是一个函数$f:V\rightarrow\{0,1,2\}$,这样\textrm{(i)}$f(N[v])\geq2$对于所有$v\in V,$,其中$N[v]$是包含$v$和所有与$v;$\textrm{相邻的顶点的集合;(ii)}由$f$下分配的顶点0诱导的子图没有孤立的顶点。R $\{2\}$ -DF的权值是其在所有顶点上的函数值之和,约束的$\{2\}$ -支配数$\gamma_{r\{2\}}(G)$是R $\{2\}$ -DF在$G.$上的最小权值,本文开始了约束的$\{2\}$ -支配数的研究。我们首先证明了计算这个参数的问题是np完全的,即使限制在二部图上也是如此。然后我们给出这个参数的各种边界。特别地,我们根据树的阶数、叶数和支持顶点的数量,建立了树的约束$\{2\}$ -支配数$T$的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信