On the eigenvalues and eigenfunctions for a free boundary problem for incompressible viscous magnetohydrodynamics

Q4 Mathematics
P. Kacprzyk, W. Zaja̧czkowski
{"title":"On the eigenvalues and eigenfunctions for a free boundary problem for incompressible viscous magnetohydrodynamics","authors":"P. Kacprzyk, W. Zaja̧czkowski","doi":"10.4064/AM2358-10-2018","DOIUrl":null,"url":null,"abstract":"The motion of incompressible magnetohydrodynamics (mhd) in a domain bounded by a free surface and coupled through it with an external electromagnetic field is considered. Transmission conditions for electric currents and magnetic fields are prescribed on the free surface. In this paper we show the idea of the proof of local existence by the method of successive approximations. For this we need linearized problems: the Stokes system for the velocity and pressure and the linear transmission problem for the electromagnetic field. We do not prove the local existence of solutions to the original problem but we show existence of a fundamental basis of functions for the linearized problems. Once we have such a basis, the existence of solutions to the linear problems can be shown by the Faedo–Galerkin method, as in other papers of Kacprzyk. The existence of solutions of the linear systems can also be shown by the method of regularizer.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2358-10-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The motion of incompressible magnetohydrodynamics (mhd) in a domain bounded by a free surface and coupled through it with an external electromagnetic field is considered. Transmission conditions for electric currents and magnetic fields are prescribed on the free surface. In this paper we show the idea of the proof of local existence by the method of successive approximations. For this we need linearized problems: the Stokes system for the velocity and pressure and the linear transmission problem for the electromagnetic field. We do not prove the local existence of solutions to the original problem but we show existence of a fundamental basis of functions for the linearized problems. Once we have such a basis, the existence of solutions to the linear problems can be shown by the Faedo–Galerkin method, as in other papers of Kacprzyk. The existence of solutions of the linear systems can also be shown by the method of regularizer.
不可压缩粘性磁流体力学自由边界问题的特征值和特征函数
研究了不可压缩磁流体动力学(mhd)在以自由曲面为界并与外加电磁场耦合的区域内的运动。在自由表面上规定了电流和磁场的传输条件。本文给出了用逐次逼近法证明局部存在性的思想。为此,我们需要线性化的问题:速度和压力的斯托克斯系统和电磁场的线性传输问题。我们没有证明原问题解的局部存在性,但我们证明了线性化问题的函数的基本基的存在性。一旦我们有了这样一个基础,就可以用Faedo-Galerkin方法来证明线性问题解的存在性,就像在Kacprzyk的其他论文中一样。线性系统解的存在性也可以用正则化器的方法来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信