Anomalous spreading in reducible multitype branching Brownian motion

M. Belloum, Bastien Mallein
{"title":"Anomalous spreading in reducible multitype branching Brownian motion","authors":"M. Belloum, Bastien Mallein","doi":"10.1214/21-EJP629","DOIUrl":null,"url":null,"abstract":"We consider a two-type reducible branching Brownian motion, defined as a two type branching particle system on the real line, in which particles of type $1$ can give birth to particles of type $2$, but not reciprocally. This process has been shown by Biggins to exhibit an anomalous spreading behaviour under specific conditions: in that situation, the rightmost particle at type $t$ is much further than the expected position for the rightmost particle in a branching Brownian motion consisting only of particles of type $1$ or of type $2$. This anomalous spreading also has been investigated from a reaction-diffusion equation standpoint by Holzer. The aim of this article is to refine the previous results and study the asymptotic behaviour of the extremal process of the two-type reducible branching Brownian motion. If the branching Brownian motion exhibits an anomalous spreading behaviour, its asymptotic differs from what it typically expected in branching Brownian motions.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJP629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We consider a two-type reducible branching Brownian motion, defined as a two type branching particle system on the real line, in which particles of type $1$ can give birth to particles of type $2$, but not reciprocally. This process has been shown by Biggins to exhibit an anomalous spreading behaviour under specific conditions: in that situation, the rightmost particle at type $t$ is much further than the expected position for the rightmost particle in a branching Brownian motion consisting only of particles of type $1$ or of type $2$. This anomalous spreading also has been investigated from a reaction-diffusion equation standpoint by Holzer. The aim of this article is to refine the previous results and study the asymptotic behaviour of the extremal process of the two-type reducible branching Brownian motion. If the branching Brownian motion exhibits an anomalous spreading behaviour, its asymptotic differs from what it typically expected in branching Brownian motions.
可约多型分支布朗运动中的异常展开
考虑两型可约分支布朗运动,定义为实线上的两型分支粒子系统,其中类型1$的粒子可以生类型2$的粒子,但不能相互生。这个过程已经被Biggins证明在特定条件下表现出反常的扩散行为:在这种情况下,类型$t$的最右边粒子比仅由类型$1$或类型$2$组成的分支布朗运动中类型$t$的最右边粒子的预期位置要远得多。Holzer也从反应扩散方程的角度研究了这种异常扩散。本文的目的是改进以往的结果,研究两型可约分支布朗运动的极值过程的渐近行为。如果分支布朗运动表现出反常的扩散行为,则其渐近性不同于分支布朗运动中通常预期的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信