{"title":"Anomalous spreading in reducible multitype branching Brownian motion","authors":"M. Belloum, Bastien Mallein","doi":"10.1214/21-EJP629","DOIUrl":null,"url":null,"abstract":"We consider a two-type reducible branching Brownian motion, defined as a two type branching particle system on the real line, in which particles of type $1$ can give birth to particles of type $2$, but not reciprocally. This process has been shown by Biggins to exhibit an anomalous spreading behaviour under specific conditions: in that situation, the rightmost particle at type $t$ is much further than the expected position for the rightmost particle in a branching Brownian motion consisting only of particles of type $1$ or of type $2$. This anomalous spreading also has been investigated from a reaction-diffusion equation standpoint by Holzer. The aim of this article is to refine the previous results and study the asymptotic behaviour of the extremal process of the two-type reducible branching Brownian motion. If the branching Brownian motion exhibits an anomalous spreading behaviour, its asymptotic differs from what it typically expected in branching Brownian motions.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJP629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We consider a two-type reducible branching Brownian motion, defined as a two type branching particle system on the real line, in which particles of type $1$ can give birth to particles of type $2$, but not reciprocally. This process has been shown by Biggins to exhibit an anomalous spreading behaviour under specific conditions: in that situation, the rightmost particle at type $t$ is much further than the expected position for the rightmost particle in a branching Brownian motion consisting only of particles of type $1$ or of type $2$. This anomalous spreading also has been investigated from a reaction-diffusion equation standpoint by Holzer. The aim of this article is to refine the previous results and study the asymptotic behaviour of the extremal process of the two-type reducible branching Brownian motion. If the branching Brownian motion exhibits an anomalous spreading behaviour, its asymptotic differs from what it typically expected in branching Brownian motions.