An Improved Cuckoo Search Algorithm With Stud Crossover for Chinese TSP Problem

Pub Date : 2021-10-01 DOI:10.4018/ijcini.20211001.oa17
Anbang Wang, Lihong Guo, Yuan Chen, Junjie Wang, Luo Liu, Yuanzhang Song
{"title":"An Improved Cuckoo Search Algorithm With Stud Crossover for Chinese TSP Problem","authors":"Anbang Wang, Lihong Guo, Yuan Chen, Junjie Wang, Luo Liu, Yuanzhang Song","doi":"10.4018/ijcini.20211001.oa17","DOIUrl":null,"url":null,"abstract":"The travelling salesman problem (TSP) is an NP-hard problem in combinatorial optimization. It has assumed significance in operations research and theoretical computer science. The problem was first formulated in 1930 and since then, has been one of the most extensively studied problems in optimization. In fact, it is used as a benchmark for many optimization methods. This paper represents a new method to addressing TSP using an improved version of cuckoo search (CS) with Stud (SCS) crossover operator. In SCS method, similar to genetic operators used in various metaheuristic algorithms, a Stud crossover operator that is originated from classical Stud genetic algorithm, is introduced into the CS with the aim of improving its effectiveness and reliability while dealing with TSP. Various test functions had been used to test this approach, and used subsequently to find the shortest path for Chinese TSP (CTSP). Experimental results presented clearly demonstrates SCS as a viable and attractive addition to the portfolio of swarm intelligence techniques.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20211001.oa17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The travelling salesman problem (TSP) is an NP-hard problem in combinatorial optimization. It has assumed significance in operations research and theoretical computer science. The problem was first formulated in 1930 and since then, has been one of the most extensively studied problems in optimization. In fact, it is used as a benchmark for many optimization methods. This paper represents a new method to addressing TSP using an improved version of cuckoo search (CS) with Stud (SCS) crossover operator. In SCS method, similar to genetic operators used in various metaheuristic algorithms, a Stud crossover operator that is originated from classical Stud genetic algorithm, is introduced into the CS with the aim of improving its effectiveness and reliability while dealing with TSP. Various test functions had been used to test this approach, and used subsequently to find the shortest path for Chinese TSP (CTSP). Experimental results presented clearly demonstrates SCS as a viable and attractive addition to the portfolio of swarm intelligence techniques.
分享
查看原文
中文TSP问题的一种改进的带Stud交叉的布谷鸟搜索算法
旅行商问题(TSP)是组合优化中的np困难问题。它在运筹学和理论计算机科学中具有重要意义。这个问题最早是在1930年提出的,从那时起,它就成为最优化领域研究最广泛的问题之一。事实上,它被用作许多优化方法的基准。本文提出了一种利用改进的布谷鸟搜索(CS)和Stud (SCS)交叉算子来寻址TSP的新方法。在SCS方法中,与各种元启发式算法中使用的遗传算子类似,在CS中引入了源自经典Stud遗传算法的Stud交叉算子,以提高其在处理TSP时的有效性和可靠性。利用各种测试函数对该方法进行了测试,并随后用于寻找中文TSP的最短路径(CTSP)。实验结果清楚地表明,SCS是一种可行且有吸引力的群体智能技术组合的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信