Angelita D Ximenes, C. Anam, E. Hidayanto, A. Naufal, D. A. Rukmana, G. Dougherty
{"title":"Automation of slice thickness measurements in computed tomography images of AAPM CT performance phantom using a non-rotational method","authors":"Angelita D Ximenes, C. Anam, E. Hidayanto, A. Naufal, D. A. Rukmana, G. Dougherty","doi":"10.2478/pjmpe-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Purpose: The current study proposes a method for automatically measuring slice thickness using a non-rotational method on the middle stair object of the AAPM CT performance phantom image. Method: The AAPM CT performance phantom was scanned by a GE Healthcare 128-slice CT scanner with nominal slice thicknesses of 0.625, 1.25, 2.5, 3.75, 5, 7.5 and 10 mm. The automated slice thickness was measured as the full width at half maximum (FWHM) of the profile of the middle stair object using a non-rotational method. The non-rotational method avoided rotating the image of the phantom. Instead, the lines to make the profiles were automatically rotated to confirm the stair’s location and rotation. The results of this non-rotational method were compared with those from a previous rotational method. Results: The slice thicknesses from the non-rotational method were 1.55, 1.86, 3.27, 4.86, 6.58, 7.57, and 9.66 mm for nominal slice thicknesses of 0.625, 1.25, 2.4, 3.75, 5, 7.5, and 10 mm, respectively. By comparison, the slice thicknesses from the rotational method were 1.53, 1.87, 3.32, 4.98, 6.77, 7.75, and 9.80 mm, respectively. The results of the nonrotational method were slightly lower (i.e. 0.25%) than the results of the rotational method for each nominal slice thickness, except for the smallest slice thickness. Conclusions: An alternative algorithm using a non-rotational method to measure the slice thickness of the middle stair object in the AAPM CT performance phantom was successfully implemented. The slice thicknesses from the nonrotational method results were slightly lower than the rotational method results for each nominal slice thickness, except at the smallest nominal slice thickness (0.625 mm).","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"1 1","pages":"133 - 138"},"PeriodicalIF":0.7000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Purpose: The current study proposes a method for automatically measuring slice thickness using a non-rotational method on the middle stair object of the AAPM CT performance phantom image. Method: The AAPM CT performance phantom was scanned by a GE Healthcare 128-slice CT scanner with nominal slice thicknesses of 0.625, 1.25, 2.5, 3.75, 5, 7.5 and 10 mm. The automated slice thickness was measured as the full width at half maximum (FWHM) of the profile of the middle stair object using a non-rotational method. The non-rotational method avoided rotating the image of the phantom. Instead, the lines to make the profiles were automatically rotated to confirm the stair’s location and rotation. The results of this non-rotational method were compared with those from a previous rotational method. Results: The slice thicknesses from the non-rotational method were 1.55, 1.86, 3.27, 4.86, 6.58, 7.57, and 9.66 mm for nominal slice thicknesses of 0.625, 1.25, 2.4, 3.75, 5, 7.5, and 10 mm, respectively. By comparison, the slice thicknesses from the rotational method were 1.53, 1.87, 3.32, 4.98, 6.77, 7.75, and 9.80 mm, respectively. The results of the nonrotational method were slightly lower (i.e. 0.25%) than the results of the rotational method for each nominal slice thickness, except for the smallest slice thickness. Conclusions: An alternative algorithm using a non-rotational method to measure the slice thickness of the middle stair object in the AAPM CT performance phantom was successfully implemented. The slice thicknesses from the nonrotational method results were slightly lower than the rotational method results for each nominal slice thickness, except at the smallest nominal slice thickness (0.625 mm).
期刊介绍:
Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.