A rheology and processing study on controlling material and process defects in polymer melt extrusion film casting using polymer blends

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
D. Rokade, P. Patil, Sheetal Nandimath, H. Pol
{"title":"A rheology and processing study on controlling material and process defects in polymer melt extrusion film casting using polymer blends","authors":"D. Rokade, P. Patil, Sheetal Nandimath, H. Pol","doi":"10.1177/87560879221150764","DOIUrl":null,"url":null,"abstract":"The primary objective of this research paper is to control the material and process defects in polymer melt extrusion film casting (EFC) process for linear chain architecture polyethylene (PE) resins through polymer blending methodology. Extrusion film casting is a well-known industrially important manufacturing process that is used to manufacture thousands of tons of polymer/plastic films/sheets and coated products. In this research, the necking defect in an EFC process has been studied experimentally for a linear low density polyethylene (LLDPE) resin and attempts have been made to control its necking by blending in a long chain branched (LCB) low density polyethylene (LDPE) resin. The blending methodology is based on the understanding that a LDPE resin displays enhanced resistance to necking as compared to the LLDPE resin. It is found that added LDPE resin enhances necking resistance for the primary LLDPE resin. Further, as the LDPE concentration increases in the blend formulation, the necking is further reduced as compared to pure LLDPE. Analogous to past studies on EFC of linear and long chain branched architecture containing PEs, it is observed that as the LDPE is increased in the blend formulations, the formulations displayed enhanced melt elasticity and extensional strain hardening in rheological studies. It is concluded from this study that polyethylene resins having linear chain architecture can be made amenable to enhanced resistance to necking using appropriate amount of a long chain branched resins. Finally, process defects such as the draw resonance onset could be shifted to higher draw ratios as the LDPE level is increased in the LLDPE-LDPE blend formulation.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"176 1","pages":"211 - 240"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879221150764","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 2

Abstract

The primary objective of this research paper is to control the material and process defects in polymer melt extrusion film casting (EFC) process for linear chain architecture polyethylene (PE) resins through polymer blending methodology. Extrusion film casting is a well-known industrially important manufacturing process that is used to manufacture thousands of tons of polymer/plastic films/sheets and coated products. In this research, the necking defect in an EFC process has been studied experimentally for a linear low density polyethylene (LLDPE) resin and attempts have been made to control its necking by blending in a long chain branched (LCB) low density polyethylene (LDPE) resin. The blending methodology is based on the understanding that a LDPE resin displays enhanced resistance to necking as compared to the LLDPE resin. It is found that added LDPE resin enhances necking resistance for the primary LLDPE resin. Further, as the LDPE concentration increases in the blend formulation, the necking is further reduced as compared to pure LLDPE. Analogous to past studies on EFC of linear and long chain branched architecture containing PEs, it is observed that as the LDPE is increased in the blend formulations, the formulations displayed enhanced melt elasticity and extensional strain hardening in rheological studies. It is concluded from this study that polyethylene resins having linear chain architecture can be made amenable to enhanced resistance to necking using appropriate amount of a long chain branched resins. Finally, process defects such as the draw resonance onset could be shifted to higher draw ratios as the LDPE level is increased in the LLDPE-LDPE blend formulation.
用聚合物共混物控制聚合物熔体挤出膜铸造材料和工艺缺陷的流变学及工艺研究
本文的主要目的是通过聚合物共混的方法来控制线性链结构聚乙烯(PE)树脂熔体挤出薄膜铸造(EFC)过程中的材料和工艺缺陷。挤出薄膜铸造是一种众所周知的工业重要制造工艺,用于制造数千吨聚合物/塑料薄膜/片材和涂层产品。在本研究中,实验研究了线性低密度聚乙烯(LLDPE)树脂在EFC过程中的缩颈缺陷,并试图通过与长链支链(LCB)低密度聚乙烯(LDPE)树脂共混来控制其缩颈。混合方法是基于这样一种认识,即与LLDPE树脂相比,LDPE树脂具有更强的抗颈缩性。结果表明,LDPE树脂的加入提高了原LLDPE树脂的抗颈缩性能。此外,随着共混配方中LDPE浓度的增加,与纯LLDPE相比,颈缩进一步减少。与过去对含聚乙烯的线性和长链支链结构的EFC研究类似,我们观察到,随着共混配方中LDPE含量的增加,在流变学研究中,该配方表现出增强的熔体弹性和拉伸应变硬化。研究结果表明,采用适量的长链支化树脂可以使具有线性链结构的聚乙烯树脂具有增强的抗缩性。最后,随着LLDPE-LDPE共混配方中LDPE含量的增加,拉伸共振发作等工艺缺陷可以转移到更高的拉伸比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信