A Note on Bernstein–Sato Varieties for Tame Divisors and Arrangements

Pub Date : 2020-08-17 DOI:10.1307/mmj/20206011
Daniel Bath
{"title":"A Note on Bernstein–Sato Varieties for Tame Divisors and Arrangements","authors":"Daniel Bath","doi":"10.1307/mmj/20206011","DOIUrl":null,"url":null,"abstract":"For strongly Euler-homogeneous, Saito-holonomic, and tame analytic germs we consider general types of multivariate Bernstein-Sato ideals associated to arbitrary factorizations of our germ. We show the zero loci of these ideals are purely codimension one and the zero loci associated to different factorizations are related by a diagonal property. If, additionally, the divisor is a hyperplane arrangement, we show the Bernstein-Sato ideals attached to a factorization into linear forms are principal. As an application, we independently verify and improve an estimate of Maisonobe's regarding standard Bernstein-Sato ideals for reduced, generic arrangements: we compute the Bernstein-Sato ideal for a factorization into linear forms and we compute its zero locus for other factorizations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20206011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For strongly Euler-homogeneous, Saito-holonomic, and tame analytic germs we consider general types of multivariate Bernstein-Sato ideals associated to arbitrary factorizations of our germ. We show the zero loci of these ideals are purely codimension one and the zero loci associated to different factorizations are related by a diagonal property. If, additionally, the divisor is a hyperplane arrangement, we show the Bernstein-Sato ideals attached to a factorization into linear forms are principal. As an application, we independently verify and improve an estimate of Maisonobe's regarding standard Bernstein-Sato ideals for reduced, generic arrangements: we compute the Bernstein-Sato ideal for a factorization into linear forms and we compute its zero locus for other factorizations.
分享
查看原文
关于驯服除数和排列的Bernstein-Sato变异的注记
对于强欧拉齐次、齐藤完整和驯服的解析细菌,我们考虑与我们的细菌的任意分解相关的多元Bernstein-Sato理想的一般类型。我们证明了这些理想的零轨迹是纯余维数为1的,并且与不同分解相关的零轨迹是由对角线性质联系起来的。另外,如果除数是一个超平面排列,我们证明了将分解成线性形式的伯恩斯坦-佐藤理想是主要的。作为一个应用,我们独立地验证和改进了Maisonobe关于简化一般排列的标准Bernstein-Sato理想的估计:我们计算了分解成线性形式的Bernstein-Sato理想,并计算了其他分解的零轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信