{"title":"Heterogeneity in the US gender wage gap","authors":"Philipp Bach, V. Chernozhukov, M. Spindler","doi":"10.1093/jrsssa/qnad091","DOIUrl":null,"url":null,"abstract":"As a measure of gender inequality, the gender wage gap has come to play an important role both in academic research and the public debate. In 2016, the majority of full-time employed women in the United States earned significantly less than comparable men. The extent to which women were affected by gender inequality in earnings, however, depended greatly on socio-economic characteristics, such as marital status or educational attainment. In this paper, we analyse data from the 2016 American Community Survey using a high-dimensional wage regression and applying double lasso to quantify heterogeneity in the gender wage gap. We find that the wage gap varied substantially across women and that the magnitude of the gap varied primarily by marital status, having children at home, race, occupation, industry, and educational attainment. These insights are helpful in designing policies that can reduce discrimination and unequal pay more effectively.","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad091","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
As a measure of gender inequality, the gender wage gap has come to play an important role both in academic research and the public debate. In 2016, the majority of full-time employed women in the United States earned significantly less than comparable men. The extent to which women were affected by gender inequality in earnings, however, depended greatly on socio-economic characteristics, such as marital status or educational attainment. In this paper, we analyse data from the 2016 American Community Survey using a high-dimensional wage regression and applying double lasso to quantify heterogeneity in the gender wage gap. We find that the wage gap varied substantially across women and that the magnitude of the gap varied primarily by marital status, having children at home, race, occupation, industry, and educational attainment. These insights are helpful in designing policies that can reduce discrimination and unequal pay more effectively.
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.