Stability analysis of implicit fractional differential equation with anti–periodic integral boundary value problem

IF 0.1 Q4 MATHEMATICS
A. Zada, H. Waheed
{"title":"Stability analysis of implicit fractional differential equation with anti–periodic integral boundary value problem","authors":"A. Zada, H. Waheed","doi":"10.2478/aupcsm-2020-0001","DOIUrl":null,"url":null,"abstract":"\n In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam– Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers– Rassias stability of the solution to an implicit nonlinear fractional differential equations corresponding to an implicit integral boundary condition. We develop conditions for the existence and uniqueness by using the classical fixed point theorems such as Banach contraction principle and Schaefer’s fixed point theorem. For stability, we utilize classical functional analysis. The main results are well illustrated with an example.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"7 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam– Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers– Rassias stability of the solution to an implicit nonlinear fractional differential equations corresponding to an implicit integral boundary condition. We develop conditions for the existence and uniqueness by using the classical fixed point theorems such as Banach contraction principle and Schaefer’s fixed point theorem. For stability, we utilize classical functional analysis. The main results are well illustrated with an example.
带反周期积分边值问题的隐式分数阶微分方程稳定性分析
本文研究了对应于隐式积分边界条件的隐式非线性分数阶微分方程解的Ulam - Hyers稳定性、广义Ulam - Hyers稳定性、Ulam - Hyers - Rassias稳定性和广义Ulam - Hyers - Rassias稳定性的存在唯一性和各种Ulam稳定性。利用经典的不动点定理如Banach收缩原理和Schaefer不动点定理,给出了存在唯一性的条件。为了稳定性,我们使用经典泛函分析。通过一个例子很好地说明了主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信