Sampling and Certifying Symmetric Functions

Yuval Filmus, Itai Leigh, Artur Riazanov, Dmitry Sokolov
{"title":"Sampling and Certifying Symmetric Functions","authors":"Yuval Filmus, Itai Leigh, Artur Riazanov, Dmitry Sokolov","doi":"10.48550/arXiv.2305.04363","DOIUrl":null,"url":null,"abstract":"A circuit $\\mathcal{C}$ samples a distribution $\\mathbf{X}$ with an error $\\epsilon$ if the statistical distance between the output of $\\mathcal{C}$ on the uniform input and $\\mathbf{X}$ is $\\epsilon$. We study the hardness of sampling a uniform distribution over the set of $n$-bit strings of Hamming weight $k$ denoted by $\\mathbf{U}^n_k$ for _decision forests_, i.e. every output bit is computed as a decision tree of the inputs. For every $k$ there is an $O(\\log n)$-depth decision forest sampling $\\mathbf{U}^n_k$ with an inverse-polynomial error [Viola 2012, Czumaj 2015]. We show that for every $\\epsilon>0$ there exists $\\tau$ such that for decision depth $\\tau \\log (n/k) / \\log \\log (n/k)$, the error for sampling $\\mathbf{U}_k^n$ is at least $1-\\epsilon$. Our result is based on the recent robust sunflower lemma [Alweiss, Lovett, Wu, Zhang 2021, Rao 2019]. Our second result is about matching a set of $n$-bit strings with the image of a $d$-_local_ circuit, i.e. such that each output bit depends on at most $d$ input bits. We study the set of all $n$-bit strings whose Hamming weight is at least $n/2$. We improve the previously known locality lower bound from $\\Omega(\\log^* n)$ [Beyersdorff, Datta, Krebs, Mahajan, Scharfenberger-Fabian, Sreenivasaiah, Thomas and Vollmer, 2013] to $\\Omega(\\sqrt{\\log n})$, leaving only a quartic gap from the best upper bound of $O(\\log^2 n)$.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"29 1","pages":"36:1-36:21"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.04363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A circuit $\mathcal{C}$ samples a distribution $\mathbf{X}$ with an error $\epsilon$ if the statistical distance between the output of $\mathcal{C}$ on the uniform input and $\mathbf{X}$ is $\epsilon$. We study the hardness of sampling a uniform distribution over the set of $n$-bit strings of Hamming weight $k$ denoted by $\mathbf{U}^n_k$ for _decision forests_, i.e. every output bit is computed as a decision tree of the inputs. For every $k$ there is an $O(\log n)$-depth decision forest sampling $\mathbf{U}^n_k$ with an inverse-polynomial error [Viola 2012, Czumaj 2015]. We show that for every $\epsilon>0$ there exists $\tau$ such that for decision depth $\tau \log (n/k) / \log \log (n/k)$, the error for sampling $\mathbf{U}_k^n$ is at least $1-\epsilon$. Our result is based on the recent robust sunflower lemma [Alweiss, Lovett, Wu, Zhang 2021, Rao 2019]. Our second result is about matching a set of $n$-bit strings with the image of a $d$-_local_ circuit, i.e. such that each output bit depends on at most $d$ input bits. We study the set of all $n$-bit strings whose Hamming weight is at least $n/2$. We improve the previously known locality lower bound from $\Omega(\log^* n)$ [Beyersdorff, Datta, Krebs, Mahajan, Scharfenberger-Fabian, Sreenivasaiah, Thomas and Vollmer, 2013] to $\Omega(\sqrt{\log n})$, leaving only a quartic gap from the best upper bound of $O(\log^2 n)$.
对称函数的抽样和证明
如果均匀输入上$\mathcal{C}$的输出与$\mathbf{X}$的统计距离为$\epsilon$,则电路$\mathcal{C}$对分布$\mathbf{X}$进行采样,误差为$\epsilon$。对于_decision forests_,我们研究了在haming权值$k$(表示为$\mathbf{U}^n_k$)的$n$ -bit字符串集合上均匀分布采样的难度,即每个输出比特都被计算为输入的决策树。对于每个$k$,都有一个具有逆多项式误差的$O(\log n)$深度决策森林采样$\mathbf{U}^n_k$ [Viola 2012, Czumaj 2015]。我们表明,对于每个$\epsilon>0$存在$\tau$,使得对于决策深度$\tau \log (n/k) / \log \log (n/k)$,采样$\mathbf{U}_k^n$的误差至少为$1-\epsilon$。我们的结果是基于最近的稳健向日葵引理[Alweiss, Lovett, Wu, Zhang 2021, Rao 2019]。我们的第二个结果是关于将一组$n$位字符串与$d$ -_local_电路的图像进行匹配,即每个输出位最多依赖于$d$位输入。我们研究了汉明权值至少为$n/2$的所有$n$位字符串的集合。我们将先前已知的局域下界从$\Omega(\log^* n)$ [Beyersdorff, Datta, Krebs, Mahajan, Scharfenberger-Fabian, Sreenivasaiah, Thomas and Vollmer, 2013]改进到$\Omega(\sqrt{\log n})$,只留下与$O(\log^2 n)$的最佳上界的四分之一差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信