USEing Transfer Learning in Retrieval of Statistical Data

A. Firsov, Vladimir Bugay, A. Karpenko
{"title":"USEing Transfer Learning in Retrieval of Statistical Data","authors":"A. Firsov, Vladimir Bugay, A. Karpenko","doi":"10.1145/3331184.3331427","DOIUrl":null,"url":null,"abstract":"DSSM-like models showed good results in retrieval of short documents that semantically match the query. However, these models require large collections of click-through data that are not available in some domains. On the other hand, the recent advances in NLP demonstrated the possibility to fine-tune language models and models trained on one set of tasks to achieve a state of the art results on a multitude of other tasks or to get competitive results using much smaller training sets. Following this trend, we combined DSSM-like architecture with USE (Universal Sentence Encoder) and BERT (Bidirectional Encoder Representations from Transformers) models in order to be able to fine-tune them on a small amount of click-through data and use them for information retrieval. This approach allowed us to significantly improve our search engine for statistical data.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

DSSM-like models showed good results in retrieval of short documents that semantically match the query. However, these models require large collections of click-through data that are not available in some domains. On the other hand, the recent advances in NLP demonstrated the possibility to fine-tune language models and models trained on one set of tasks to achieve a state of the art results on a multitude of other tasks or to get competitive results using much smaller training sets. Following this trend, we combined DSSM-like architecture with USE (Universal Sentence Encoder) and BERT (Bidirectional Encoder Representations from Transformers) models in order to be able to fine-tune them on a small amount of click-through data and use them for information retrieval. This approach allowed us to significantly improve our search engine for statistical data.
迁移学习在统计数据检索中的应用
类dsm模型在检索语义上与查询匹配的短文档方面显示出良好的结果。然而,这些模型需要大量的点击数据,而这些数据在某些领域是不可用的。另一方面,NLP的最新进展表明,可以对语言模型和在一组任务上训练的模型进行微调,从而在许多其他任务上获得最先进的结果,或者使用更小的训练集获得具有竞争力的结果。遵循这一趋势,我们将类似dsm的架构与USE(通用句子编码器)和BERT(来自变压器的双向编码器表示)模型结合起来,以便能够在少量的点击数据上对它们进行微调,并将它们用于信息检索。这种方法使我们能够显著改进统计数据的搜索引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信