Bian Tao, Liu Liangliang, Cai Wenhao, Jiang Wen, Liu Zhiwen
{"title":"Multi-objective optimization design of shaftless rim-driven thruster","authors":"Bian Tao, Liu Liangliang, Cai Wenhao, Jiang Wen, Liu Zhiwen","doi":"10.1177/14750902231188393","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective optimization design method for shaftless rim-driven thruster (RDT) based on the ISIGHT platform. The pitch ratio, the blade area ratio and the advance coefficient of RDT were considered as the design optimization variables, the thrust and efficiency of the RDT were the optimization objectives. The multi-objective optimization design method was based on the surrogate module and the optimization module in the ISIGHT platform. Two analytical methods (response surface methodology (RSM) and radial basis function Model (RBF)) were used to build the surrogate model. The Muti-Island GA optimization algorithm was adopted in the optimization module. The paper indicates that both RSM model and RBF model are feasible to build the surrogate model, the RBF model has better accuracy and reliability than RSM model. The blade obtained by RBF method has larger thrust and smaller torque than that of the blade obtained by RSM method. For the large advance coefficient ( J > 0.6), the efficiency of the blade obtained by RBF method is slightly higher than that of the blade obtained by RSM method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231188393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a multi-objective optimization design method for shaftless rim-driven thruster (RDT) based on the ISIGHT platform. The pitch ratio, the blade area ratio and the advance coefficient of RDT were considered as the design optimization variables, the thrust and efficiency of the RDT were the optimization objectives. The multi-objective optimization design method was based on the surrogate module and the optimization module in the ISIGHT platform. Two analytical methods (response surface methodology (RSM) and radial basis function Model (RBF)) were used to build the surrogate model. The Muti-Island GA optimization algorithm was adopted in the optimization module. The paper indicates that both RSM model and RBF model are feasible to build the surrogate model, the RBF model has better accuracy and reliability than RSM model. The blade obtained by RBF method has larger thrust and smaller torque than that of the blade obtained by RSM method. For the large advance coefficient ( J > 0.6), the efficiency of the blade obtained by RBF method is slightly higher than that of the blade obtained by RSM method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.