Multi-objective optimization design of shaftless rim-driven thruster

IF 1.5 4区 工程技术 Q3 ENGINEERING, MARINE
Bian Tao, Liu Liangliang, Cai Wenhao, Jiang Wen, Liu Zhiwen
{"title":"Multi-objective optimization design of shaftless rim-driven thruster","authors":"Bian Tao, Liu Liangliang, Cai Wenhao, Jiang Wen, Liu Zhiwen","doi":"10.1177/14750902231188393","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective optimization design method for shaftless rim-driven thruster (RDT) based on the ISIGHT platform. The pitch ratio, the blade area ratio and the advance coefficient of RDT were considered as the design optimization variables, the thrust and efficiency of the RDT were the optimization objectives. The multi-objective optimization design method was based on the surrogate module and the optimization module in the ISIGHT platform. Two analytical methods (response surface methodology (RSM) and radial basis function Model (RBF)) were used to build the surrogate model. The Muti-Island GA optimization algorithm was adopted in the optimization module. The paper indicates that both RSM model and RBF model are feasible to build the surrogate model, the RBF model has better accuracy and reliability than RSM model. The blade obtained by RBF method has larger thrust and smaller torque than that of the blade obtained by RSM method. For the large advance coefficient ( J > 0.6), the efficiency of the blade obtained by RBF method is slightly higher than that of the blade obtained by RSM method.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231188393","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a multi-objective optimization design method for shaftless rim-driven thruster (RDT) based on the ISIGHT platform. The pitch ratio, the blade area ratio and the advance coefficient of RDT were considered as the design optimization variables, the thrust and efficiency of the RDT were the optimization objectives. The multi-objective optimization design method was based on the surrogate module and the optimization module in the ISIGHT platform. Two analytical methods (response surface methodology (RSM) and radial basis function Model (RBF)) were used to build the surrogate model. The Muti-Island GA optimization algorithm was adopted in the optimization module. The paper indicates that both RSM model and RBF model are feasible to build the surrogate model, the RBF model has better accuracy and reliability than RSM model. The blade obtained by RBF method has larger thrust and smaller torque than that of the blade obtained by RSM method. For the large advance coefficient ( J > 0.6), the efficiency of the blade obtained by RBF method is slightly higher than that of the blade obtained by RSM method.
无轴轮辋驱动推力器多目标优化设计
提出了一种基于ISIGHT平台的无轴轮辋驱动推力器(RDT)多目标优化设计方法。以螺距比、叶面积比和RDT推进系数为设计优化变量,以RDT推力和效率为优化目标。基于ISIGHT平台的代理模块和优化模块,提出了多目标优化设计方法。采用响应面法(RSM)和径向基函数模型(RBF)两种分析方法建立代理模型。优化模块采用多岛遗传优化算法。研究表明,RSM模型和RBF模型都可以建立代理模型,RBF模型比RSM模型具有更高的精度和可靠性。与RSM法相比,RBF法得到的叶片具有更大的推力和更小的扭矩。对于较大的推进系数(J > 0.6), RBF法得到的叶片效率略高于RSM法得到的叶片效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
11.10%
发文量
77
审稿时长
>12 weeks
期刊介绍: The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信