Forecasting country conflict using statistical learning methods

Q3 Decision Sciences
Sarah Neumann, D. Ahner, R. R. Hill
{"title":"Forecasting country conflict using statistical learning methods","authors":"Sarah Neumann, D. Ahner, R. R. Hill","doi":"10.1108/jdal-10-2021-0014","DOIUrl":null,"url":null,"abstract":"PurposeThis paper aims to examine whether changing the clustering of countries within a United States Combatant Command (COCOM) area of responsibility promotes improved forecasting of conflict.Design/methodology/approachIn this paper statistical learning methods are used to create new country clusters that are then used in a comparative analysis of model-based conflict prediction.FindingsIn this study a reorganization of the countries assigned to specific areas of responsibility are shown to provide improvements in the ability of models to predict conflict.Research limitations/implicationsThe study is based on actual historical data and is purely data driven.Practical implicationsThe study demonstrates the utility of the analytical methodology but carries not implementation recommendations.Originality/valueThis is the first study to use the statistical methods employed to not only investigate the re-clustering of countries but more importantly the impact of that change on analytical predictions.","PeriodicalId":32838,"journal":{"name":"Journal of Defense Analytics and Logistics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Analytics and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jdal-10-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

PurposeThis paper aims to examine whether changing the clustering of countries within a United States Combatant Command (COCOM) area of responsibility promotes improved forecasting of conflict.Design/methodology/approachIn this paper statistical learning methods are used to create new country clusters that are then used in a comparative analysis of model-based conflict prediction.FindingsIn this study a reorganization of the countries assigned to specific areas of responsibility are shown to provide improvements in the ability of models to predict conflict.Research limitations/implicationsThe study is based on actual historical data and is purely data driven.Practical implicationsThe study demonstrates the utility of the analytical methodology but carries not implementation recommendations.Originality/valueThis is the first study to use the statistical methods employed to not only investigate the re-clustering of countries but more importantly the impact of that change on analytical predictions.
使用统计学习方法预测国家冲突
本文旨在研究改变美国作战司令部(COCOM)责任区域内的国家集群是否有助于改进冲突预测。设计/方法/方法本文使用统计学习方法创建新的国家集群,然后将其用于基于模型的冲突预测的比较分析。在这项研究中,对分配到具体责任领域的国家进行重组,表明可以提高模型预测冲突的能力。研究局限/启示本研究基于实际的历史数据,纯粹是数据驱动的。实际意义本研究展示了分析方法的效用,但没有提出实施建议。原创性/价值这是第一个使用统计方法的研究,不仅调查了国家的重新聚类,更重要的是调查了这种变化对分析预测的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
5
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信