The Versatility of the Bioeconomy. Sustainability Aspects of the Use of Bran

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Megija Valtere, Daina Kaleja, Edgars Kudurs, Antra Kalnbaļķīte, Viktorija Terjanika, Beate Zlaugotne, J. Pubule, D. Blumberga
{"title":"The Versatility of the Bioeconomy. Sustainability Aspects of the Use of Bran","authors":"Megija Valtere, Daina Kaleja, Edgars Kudurs, Antra Kalnbaļķīte, Viktorija Terjanika, Beate Zlaugotne, J. Pubule, D. Blumberga","doi":"10.2478/rtuect-2022-0050","DOIUrl":null,"url":null,"abstract":"Abstract As food consumption increases, so does the number of agricultural by-products. That is why it is necessary to find the best possible uses for them, operating by the principles of the bioeconomy. This work aims to gather information on the possibilities of using grain byproducts to develop new products and evaluate which bran products are the most suitable for commercialisation based on economic, environmental, social, and technical factors. Two methods were used in this work: literature review and multi-criteria decision analysis. As a result, 30 products were identified that could be made by using wheat bran, straw, husk, and dust. The products were divided into six groups – packaging materials, building materials, adsorbents, fuel, thermal insulation materials, and chemicals. In multi-criteria decision analysis, it was looked at seven bran products of which the best alternative for further commercialisation is mycelium-based biocomposite.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2022-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract As food consumption increases, so does the number of agricultural by-products. That is why it is necessary to find the best possible uses for them, operating by the principles of the bioeconomy. This work aims to gather information on the possibilities of using grain byproducts to develop new products and evaluate which bran products are the most suitable for commercialisation based on economic, environmental, social, and technical factors. Two methods were used in this work: literature review and multi-criteria decision analysis. As a result, 30 products were identified that could be made by using wheat bran, straw, husk, and dust. The products were divided into six groups – packaging materials, building materials, adsorbents, fuel, thermal insulation materials, and chemicals. In multi-criteria decision analysis, it was looked at seven bran products of which the best alternative for further commercialisation is mycelium-based biocomposite.
生物经济的多功能性。麸皮使用的可持续性方面
随着粮食消费的增加,农业副产品的数量也在增加。这就是为什么有必要根据生物经济的原则,为它们找到可能的最佳用途。这项工作旨在收集有关利用谷物副产品开发新产品的可能性的信息,并根据经济、环境、社会和技术因素评估哪些麸皮产品最适合商业化。在这项工作中使用了两种方法:文献综述和多准则决策分析。结果,确定了30种可由麦麸、秸秆、麦壳和麦尘制成的产品。产品分为包装材料、建筑材料、吸附剂、燃料、保温材料和化学品六大类。在多标准决策分析中,研究了7种麸皮产品,其中以菌丝体为基础的生物复合材料是进一步商业化的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信