Computing the split domination number of grid graphs

V. Girish, P. Usha
{"title":"Computing the split domination number of grid graphs","authors":"V. Girish, P. Usha","doi":"10.19184/IJC.2021.5.1.1","DOIUrl":null,"url":null,"abstract":"<p>A set <em>D</em> - <em>V</em> is a dominating set of <em>G</em> if every vertex in <em>V - D</em> is adjacent to some vertex in <em>D</em>. The dominating number γ(<em>G</em>) of <em>G</em> is the minimum cardinality of a dominating set <em>D</em>. A dominating set <em>D</em> of a graph <em>G</em> = (<em>V;E</em>) is a split dominating set if the induced graph (<em>V</em> - <em>D</em>) is disconnected. The split domination number γ<em><sub>s</sub></em>(<em>G</em>) is the minimum cardinality of a split domination set. In this paper we have introduced a new method to obtain the split domination number of grid graphs by partitioning the vertex set in terms of star graphs and also we have<br />obtained the exact values of γ<em>s</em>(<em>G<sub>m;n</sub></em>); <em>m</em> ≤ <em>n</em>; <em>m,n</em> ≤ 24:</p>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"41 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/IJC.2021.5.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A set D - V is a dominating set of G if every vertex in V - D is adjacent to some vertex in D. The dominating number γ(G) of G is the minimum cardinality of a dominating set D. A dominating set D of a graph G = (V;E) is a split dominating set if the induced graph (V - D) is disconnected. The split domination number γs(G) is the minimum cardinality of a split domination set. In this paper we have introduced a new method to obtain the split domination number of grid graphs by partitioning the vertex set in terms of star graphs and also we have
obtained the exact values of γs(Gm;n); mn; m,n ≤ 24:

计算网格图的分割支配数
如果V - D中的每个顶点与D中的某个顶点相邻,则集合D - V是G的支配集,G的支配数γ(G)是支配集D的最小基数。如果诱导图(V - D)是不连通的,则图G = (V;E)的支配集D是分裂支配集。分割支配数γs(G)是分割支配集的最小基数。本文介绍了一种用星图划分顶点集来求网格图分裂支配数的新方法,并得到了γs(Gm;n)的精确值;M≤n;M,n≤24;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信