{"title":"Early diagnosis of COVID-19 patients using deep learning-based deep forest model","authors":"Dilbag Singh, Vijay Kumar, Manjit Kaur, R. Kumari","doi":"10.1080/0952813X.2021.2021300","DOIUrl":null,"url":null,"abstract":"ABSTRACT Coronavirus disease-19 (COVID-19) has rapidly spread all over the world. It is found that the low sensitivity of reverse transcription-polymerase chain reaction (RT-PCR) examinations during the early stage of COVID-19 disease. Thus, efficient models are desirable for early-stage testing of COVID-19 infected patients. Chest X-ray (CXR) images of COVID-19 infected patients have shown some bilateral changes. In this paper, deep transfer learning and a deep forest-based model are proposed to diagnose COVID-19 infection from CXR images. Initially, features of X-ray images are extracted using the well-known deep transfer learning model (i.e., ResNet101), which does not require tuning many parameters compared to the deep convolutional neural network (CNN). After that, the deep forest model is utilised to predict COVID-19 infected patients. The deep forest is based upon ensemble learning and requires a small number of hyper-parameters. Additionally, the proposed model is trained on a multi-class dataset that contains four different classes as COVID-19 (+), pneumonia, tuberculosis, and healthy patients. The comparisons are drawn among the proposed deep transfer learning and deep forest-based models, the competitive models. The obtained results show that the proposed model effectively diagnoses COVID-19 infection with an accuracy of 99.4%.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"14 1","pages":"365 - 375"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.2021300","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT Coronavirus disease-19 (COVID-19) has rapidly spread all over the world. It is found that the low sensitivity of reverse transcription-polymerase chain reaction (RT-PCR) examinations during the early stage of COVID-19 disease. Thus, efficient models are desirable for early-stage testing of COVID-19 infected patients. Chest X-ray (CXR) images of COVID-19 infected patients have shown some bilateral changes. In this paper, deep transfer learning and a deep forest-based model are proposed to diagnose COVID-19 infection from CXR images. Initially, features of X-ray images are extracted using the well-known deep transfer learning model (i.e., ResNet101), which does not require tuning many parameters compared to the deep convolutional neural network (CNN). After that, the deep forest model is utilised to predict COVID-19 infected patients. The deep forest is based upon ensemble learning and requires a small number of hyper-parameters. Additionally, the proposed model is trained on a multi-class dataset that contains four different classes as COVID-19 (+), pneumonia, tuberculosis, and healthy patients. The comparisons are drawn among the proposed deep transfer learning and deep forest-based models, the competitive models. The obtained results show that the proposed model effectively diagnoses COVID-19 infection with an accuracy of 99.4%.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving