Data-Driven Optimization with Distributionally Robust Second Order Stochastic Dominance Constraints

IF 0.7 4区 管理学 Q3 Engineering
Chun Peng, E. Delage
{"title":"Data-Driven Optimization with Distributionally Robust Second Order Stochastic Dominance Constraints","authors":"Chun Peng, E. Delage","doi":"10.1287/opre.2022.2387","DOIUrl":null,"url":null,"abstract":"This paper presents the first comprehensive study of a data-driven formulation of the distributionally robust second order stochastic dominance constrained problem (DRSSDCP) that hinges on using a type-1 Wasserstein ambiguity set. It is, furthermore, for the first time shown to be axiomatically motivated in an environment with distribution ambiguity. We formulate the DRSSDCP as a multistage robust optimization problem and further propose a tractable conservative approximation that exploits finite adaptability and a scenario-based lower bounding problem. We then propose the first exact optimization algorithm for this DRSSDCP. We illustrate how the data-driven DRSSDCP can be applied in practice on resource-allocation problems with both synthetic and real data. Our empirical results show that, with a proper adjustment of the size of the Wasserstein ball, DRSSDCP can reach acceptable out-of-sample feasibility yet still generating strictly better performance than what is achieved by the reference strategy.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"11 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.2387","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents the first comprehensive study of a data-driven formulation of the distributionally robust second order stochastic dominance constrained problem (DRSSDCP) that hinges on using a type-1 Wasserstein ambiguity set. It is, furthermore, for the first time shown to be axiomatically motivated in an environment with distribution ambiguity. We formulate the DRSSDCP as a multistage robust optimization problem and further propose a tractable conservative approximation that exploits finite adaptability and a scenario-based lower bounding problem. We then propose the first exact optimization algorithm for this DRSSDCP. We illustrate how the data-driven DRSSDCP can be applied in practice on resource-allocation problems with both synthetic and real data. Our empirical results show that, with a proper adjustment of the size of the Wasserstein ball, DRSSDCP can reach acceptable out-of-sample feasibility yet still generating strictly better performance than what is achieved by the reference strategy.
具有分布鲁棒二阶随机优势约束的数据驱动优化
本文首次全面研究了数据驱动的分布鲁棒二阶随机优势约束问题(DRSSDCP)的公式,该公式依赖于使用1型Wasserstein模糊集。此外,它第一次被证明在分布模糊的环境中是公理化的。我们将DRSSDCP描述为一个多阶段鲁棒优化问题,并进一步提出了一个可处理的保守逼近,利用有限适应性和基于场景的下边界问题。然后,我们提出了该DRSSDCP的第一个精确优化算法。我们说明了数据驱动的DRSSDCP如何在实际中应用于综合数据和真实数据的资源分配问题。我们的实证结果表明,通过适当调整Wasserstein球的大小,DRSSDCP可以达到可接受的样本外可行性,但仍然产生严格优于参考策略的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信