Unsupervised Topographic Learning for Spatiotemporal Data Mining

Guénaël Cabanes, Younès Bennani
{"title":"Unsupervised Topographic Learning for Spatiotemporal Data Mining","authors":"Guénaël Cabanes, Younès Bennani","doi":"10.1155/2010/832542","DOIUrl":null,"url":null,"abstract":"In recent years, the size and complexity of datasets have shown an exponential growth. In many application areas, huge amounts of data are generated, explicitly or implicitly containing spatial or spatiotemporal information. However, the ability to analyze these data remains inadequate, and the need for adapted data mining tools becomes a major challenge. In this paper, we propose a new unsupervised algorithm, suitable for the analysis of noisy spatiotemporal Radio Frequency IDentification (RFID) data. Two real applications show that this algorithm is an efficient data-mining tool for behavioral studies based on RFID technology. It allows discovering and comparing stable patterns in an RFID signal and is suitable for continuous learning.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/832542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In recent years, the size and complexity of datasets have shown an exponential growth. In many application areas, huge amounts of data are generated, explicitly or implicitly containing spatial or spatiotemporal information. However, the ability to analyze these data remains inadequate, and the need for adapted data mining tools becomes a major challenge. In this paper, we propose a new unsupervised algorithm, suitable for the analysis of noisy spatiotemporal Radio Frequency IDentification (RFID) data. Two real applications show that this algorithm is an efficient data-mining tool for behavioral studies based on RFID technology. It allows discovering and comparing stable patterns in an RFID signal and is suitable for continuous learning.
面向时空数据挖掘的无监督地形学习
近年来,数据集的规模和复杂性呈指数级增长。在许多应用领域,产生了大量的数据,显式或隐式地包含空间或时空信息。然而,分析这些数据的能力仍然不足,对适应数据挖掘工具的需求成为一个主要挑战。在本文中,我们提出了一种新的无监督算法,适用于分析有噪声的时空射频识别(RFID)数据。两个实际应用表明,该算法是基于RFID技术的行为研究的有效数据挖掘工具。它允许发现和比较RFID信号中的稳定模式,适合于持续学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信