Image Segmentation in Shape Synthesis, Shape Optimization, And Reverse Engineering

M. Ćurković, A. Curkovic, D. Vucina, D. Samardžić
{"title":"Image Segmentation in Shape Synthesis, Shape Optimization, And Reverse Engineering","authors":"M. Ćurković, A. Curkovic, D. Vucina, D. Samardžić","doi":"10.5121/csit.2022.121824","DOIUrl":null,"url":null,"abstract":"Image segmentation and segmentation of geometry are one of the basic requirements for reverse engineering, shape synthesis, and shape optimization. In terms of shape optimization and shape synthesis where the original geometry should be faithfully replaced with some mathematical parametric model (NURBS, hierarchical NURBS, T-Spline, …) segmentation of geometry may be done directly on 3D geometry and its corresponding parametric values in the 2D parametric domain. In our approach, we are focused on segmentation of 2D parametric domain as an image instead of 3D geometry. The reason for this lies in our dynamic hierarchical parametric model, which controls the results of various operators from image processing applied to the parametric domain.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image segmentation and segmentation of geometry are one of the basic requirements for reverse engineering, shape synthesis, and shape optimization. In terms of shape optimization and shape synthesis where the original geometry should be faithfully replaced with some mathematical parametric model (NURBS, hierarchical NURBS, T-Spline, …) segmentation of geometry may be done directly on 3D geometry and its corresponding parametric values in the 2D parametric domain. In our approach, we are focused on segmentation of 2D parametric domain as an image instead of 3D geometry. The reason for this lies in our dynamic hierarchical parametric model, which controls the results of various operators from image processing applied to the parametric domain.
形状合成、形状优化和逆向工程中的图像分割
图像分割和几何分割是逆向工程、形状综合和形状优化的基本要求之一。在形状优化和形状综合中,需要用一些数学参数模型(NURBS、分层NURBS、t样条等)忠实地代替原始几何形状,可以直接在二维参数域中对三维几何及其相应的参数值进行几何分割。在我们的方法中,我们专注于将2D参数域分割为图像,而不是3D几何形状。其原因在于我们的动态分层参数模型,该模型控制了应用于参数域的图像处理的各种算子的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信