Low-depth arithmetic circuit lower bounds via shifted partials

Prashanth Amireddy, A. Garg, N. Kayal, Chandan Saha, Bhargav Thankey
{"title":"Low-depth arithmetic circuit lower bounds via shifted partials","authors":"Prashanth Amireddy, A. Garg, N. Kayal, Chandan Saha, Bhargav Thankey","doi":"10.48550/arXiv.2211.07691","DOIUrl":null,"url":null,"abstract":"We prove super-polynomial lower bounds for low-depth arithmetic circuits using the shifted partials measure [Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012] and the affine projections of partials measure [Garg-Kayal-Saha, FOCS 2020], [Kayal-Nair-Saha, STACS 2016]. The recent breakthrough work of Limaye, Srinivasan and Tavenas [FOCS 2021] proved these lower bounds by proving lower bounds for low-depth set-multilinear circuits. An interesting aspect of our proof is that it does not require conversion of a circuit to a set-multilinear circuit, nor does it involve a random restriction. We are able to upper bound the measures for homogeneous formulas directly, without going via set-multilinearity. Our lower bounds hold for the iterated matrix multiplication as well as the Nisan-Wigderson design polynomials. We also define a subclass of homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This generalizes the superpolynomial lower bounds for regular formulas in [Kayal-Saha-Saptharishi, STOC 2014], [Fournier-Limaye-Malod-Srinivasan, STOC 2014].","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"147 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.07691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We prove super-polynomial lower bounds for low-depth arithmetic circuits using the shifted partials measure [Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012] and the affine projections of partials measure [Garg-Kayal-Saha, FOCS 2020], [Kayal-Nair-Saha, STACS 2016]. The recent breakthrough work of Limaye, Srinivasan and Tavenas [FOCS 2021] proved these lower bounds by proving lower bounds for low-depth set-multilinear circuits. An interesting aspect of our proof is that it does not require conversion of a circuit to a set-multilinear circuit, nor does it involve a random restriction. We are able to upper bound the measures for homogeneous formulas directly, without going via set-multilinearity. Our lower bounds hold for the iterated matrix multiplication as well as the Nisan-Wigderson design polynomials. We also define a subclass of homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This generalizes the superpolynomial lower bounds for regular formulas in [Kayal-Saha-Saptharishi, STOC 2014], [Fournier-Limaye-Malod-Srinivasan, STOC 2014].
低深度算术电路下界通过移位偏
我们使用移位偏量测度[Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012]和偏量测度的仿射投影[Garg-Kayal-Saha, FOCS 2020], [Kayal- nair - saha, STACS 2016]证明了低深度算术电路的超多项式下界。Limaye、Srinivasan和Tavenas最近的突破性工作[FOCS 2021]通过证明低深度集多线性电路的下界证明了这些下界。我们证明的一个有趣的方面是,它不需要将电路转换为集合多线性电路,也不涉及随机限制。我们可以直接给出齐次公式的测度的上界,而不需要经过集合多重线性。我们的下界适用于迭代矩阵乘法以及Nisan-Wigderson设计多项式。我们还定义了齐次公式的一个子类,我们称之为唯一解析树(UPT)公式,并证明了这些公式的超多项式下界。这推广了[Kayal-Saha-Saptharishi, STOC 2014], [Fournier-Limaye-Malod-Srinivasan, STOC 2014]中正则公式的超多项式下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信